|
import os |
|
from importlib import import_module |
|
from typing import List, Callable, Union, Optional |
|
|
|
import PIL.Image |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import LongTensor, IntTensor, Tensor |
|
from transformers import CLIPImageProcessor, CLIPVisionModel, SiglipImageProcessor, SiglipVisionModel |
|
from transformers import PreTrainedModel, AutoModel, AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor |
|
from transformers.generation.utils import GenerateOutput |
|
from transformers.cache_utils import HybridCache |
|
|
|
from .configuration_ovis import BaseVisualTokenizerConfig, ClipVisualTokenizerConfig, SiglipVisualTokenizerConfig |
|
from .configuration_ovis import OvisConfig, ConversationFormatter, IGNORE_INDEX, IMAGE_TOKEN_INDEX |
|
|
|
|
|
|
|
|
|
|
|
class BaseVisualTokenizer(PreTrainedModel): |
|
base_model_prefix = "backbone" |
|
main_input_name = None |
|
_image_processor_class = None |
|
_image_processor_kwargs = {} |
|
_backbone_class = None |
|
_backbone_name_or_path = None |
|
|
|
def __init__(self, config: BaseVisualTokenizerConfig, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
if kwargs.get('train_from_scratch'): |
|
self.image_processor = self._image_processor_class.from_pretrained( |
|
self._backbone_name_or_path, **self._image_processor_kwargs) |
|
self.backbone = self._backbone_class.from_pretrained( |
|
self._backbone_name_or_path, **self.config.backbone_kwargs) |
|
self.config.backbone_config = self.backbone.config |
|
else: |
|
self.image_processor = AutoImageProcessor.from_pretrained( |
|
kwargs['image_processor_name_or_path']) |
|
self.backbone = AutoModel.from_config(self.config.backbone_config) |
|
self.head = None |
|
|
|
assert all((self.image_processor.do_resize, |
|
not getattr(self.image_processor, 'do_center_crop', False), |
|
self.image_processor.do_rescale, |
|
self.image_processor.do_normalize |
|
)), f"image_processor `{self.image_processor}` is not supported currently" |
|
|
|
def get_backbone(self): |
|
return self.backbone |
|
|
|
def get_image_processor(self): |
|
return self.image_processor |
|
|
|
def get_zero_pixel_values(self, n=1): |
|
height, width = self.get_image_size() |
|
if self.config.hd_booster is None: |
|
return torch.zeros(n, 3, height, width) |
|
elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']: |
|
return torch.zeros(n, 3 * 5, height, width) |
|
else: |
|
raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}') |
|
|
|
def get_head(self): |
|
return self.head |
|
|
|
def get_image_size(self): |
|
raise NotImplementedError |
|
|
|
def preprocess_image(self, image: PIL.Image.Image, convert_to_rgb=True): |
|
def _preprocess(img: PIL.Image.Image): |
|
|
|
sides = self.get_image_size() |
|
if sides[0] != sides[1]: |
|
raise ValueError('get_image_size() returns non-square size') |
|
side = sides[0] |
|
|
|
w, h = img.size |
|
if w == h: |
|
new_width = new_height = side |
|
elif w > h: |
|
new_width = side |
|
new_height = int(h / w * new_width) |
|
else: |
|
new_height = side |
|
new_width = int(w / h * new_height) |
|
new_size = dict(height=new_height, width=new_width) |
|
pixel_values = self.image_processor.preprocess( |
|
img, size=new_size, return_tensors='pt')['pixel_values'] |
|
|
|
|
|
square_values = torch.zeros( |
|
[1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device) |
|
new_height, new_width = pixel_values.shape[2:] |
|
if new_height == new_width: |
|
square_values[:, :, :, :] = pixel_values |
|
elif new_height > new_width: |
|
from_index = (side - new_width) // 2 |
|
square_values[:, :, :, from_index:from_index + new_width] = pixel_values |
|
else: |
|
from_index = (side - new_height) // 2 |
|
square_values[:, :, from_index:from_index + new_height, :] = pixel_values |
|
|
|
return square_values |
|
|
|
if convert_to_rgb and image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
|
|
if self.config.hd_booster is None: |
|
return _preprocess(image) |
|
elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']: |
|
width, height = image.size |
|
is_low_resolution = (height < self.get_image_size()[0] * 1.5 or |
|
width < self.get_image_size()[1] * 1.5) |
|
if self.config.hd_booster == 's2wrapper-adaptive' and is_low_resolution: |
|
values = self.get_zero_pixel_values() + torch.inf |
|
values[0][:3] = _preprocess(image)[0] |
|
else: |
|
center_x, center_y = width // 2, height // 2 |
|
image_top_left = image.crop((0, 0, center_x, center_y)) |
|
image_top_right = image.crop((center_x, 0, width, center_y)) |
|
image_bottom_left = image.crop((0, center_y, center_x, height)) |
|
image_bottom_right = image.crop((center_x, center_y, width, height)) |
|
imgs = [image, image_top_left, image_top_right, image_bottom_left, image_bottom_right] |
|
values = torch.cat([_preprocess(img) for img in imgs], dim=1) |
|
return values |
|
else: |
|
raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}') |
|
|
|
def get_backbone_layer(self, index): |
|
return self.backbone.vision_model.encoder.layers[index] |
|
|
|
def tokenize(self, logits): |
|
def st_argmax(y_soft, dim): |
|
index = y_soft.max(dim, keepdim=True)[1] |
|
y_hard = torch.zeros_like( |
|
y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0) |
|
ret = y_hard - y_soft.detach() + y_soft |
|
return ret |
|
|
|
if self.config.tokenize_function == 'softmax': |
|
tokens = F.softmax(logits, dim=-1) |
|
elif self.config.tokenize_function == 'gumbel_argmax': |
|
tokens = F.gumbel_softmax(logits, tau=self.config.tau, hard=True) |
|
elif self.config.tokenize_function == 'st_argmax': |
|
tokens = st_argmax(logits, dim=-1) |
|
else: |
|
raise ValueError( |
|
f'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax,' |
|
f' but got {self.config.tokenize_function}') |
|
return tokens |
|
|
|
|
|
class ClipVisualTokenizer(BaseVisualTokenizer): |
|
config_class = ClipVisualTokenizerConfig |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["CLIPEncoderLayer"] |
|
_image_processor_class = CLIPImageProcessor |
|
_image_processor_kwargs = dict(do_center_crop=False) |
|
_backbone_class = CLIPVisionModel |
|
_backbone_name_or_path = "openai/clip-vit-large-patch14-336" |
|
|
|
def __init__(self, config: ClipVisualTokenizerConfig = None, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
head_dim = self.config.vocab_size |
|
if self.config.use_indicators: |
|
head_dim -= 2 |
|
if self.config.hd_booster is None: |
|
self.head = torch.nn.Sequential( |
|
torch.nn.Linear(self.backbone.config.hidden_size, head_dim, bias=False), |
|
torch.nn.LayerNorm(head_dim) |
|
) |
|
elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']: |
|
self.head = torch.nn.Sequential( |
|
torch.nn.Linear(self.backbone.config.hidden_size * 2, head_dim, bias=False), |
|
torch.nn.LayerNorm(head_dim) |
|
) |
|
else: |
|
raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}') |
|
|
|
def get_image_size(self): |
|
height = self.image_processor.crop_size["height"] |
|
width = self.image_processor.crop_size["width"] |
|
return height, width |
|
|
|
def encode(self, pixel_values): |
|
if self.config.hd_booster is None: |
|
output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True) |
|
features = output.hidden_states[-1] |
|
if self.config.drop_cls_token: |
|
features = features[:, 1:, :] |
|
elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']: |
|
n, c, side, _ = pixel_values.shape |
|
if self.config.hd_booster == 's2wrapper-adaptive': |
|
pixel_values_mask = torch.isinf(pixel_values) |
|
pixel_values = torch.masked_fill(pixel_values, pixel_values_mask, 0.0) |
|
pixel_values = pixel_values.reshape(n * 5, c // 5, side, side) |
|
output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True) |
|
features = output.hidden_states[-1] |
|
if self.config.drop_cls_token: |
|
features = features[:, 1:, :] |
|
_, l, d = features.shape |
|
features = features.reshape(n, 5, l, d) |
|
features_overall = features[:, 0, :, :] |
|
features_parts = features[:, 1:, :, :] |
|
sqrt_l = int(l ** 0.5) |
|
assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square." |
|
features_parts = features_parts.reshape(n, 4, sqrt_l, sqrt_l, d) |
|
features_top = torch.concat( |
|
[features_parts[:, 0, :, :, :], features_parts[:, 1, :, :, :]], dim=-2) |
|
features_bottom = torch.concat( |
|
[features_parts[:, 2, :, :, :], features_parts[:, 3, :, :, :]], dim=-2) |
|
features_merge = torch.concat([features_top, features_bottom], dim=-3) |
|
features_pool = F.interpolate( |
|
features_merge.permute(0, 3, 1, 2).to(torch.float32), |
|
size=sqrt_l, |
|
mode='area' |
|
) |
|
features_pool = features_pool.flatten(2).permute(0, 2, 1).to(features.dtype) |
|
if self.config.hd_booster == 's2wrapper-adaptive': |
|
features_pool_mask = torch.unsqueeze( |
|
torch.unsqueeze(pixel_values_mask[:, -1, -1, -1], dim=-1), dim=-1) |
|
features_pool = torch.masked_fill(features_pool, features_pool_mask, 0.0) |
|
features = torch.cat([features_overall, features_pool], dim=-1) |
|
else: |
|
raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}') |
|
return features |
|
|
|
def forward(self, pixel_values) -> Tensor: |
|
features = self.encode(pixel_values) |
|
logits = self.head(features) |
|
tokens = self.tokenize(logits) |
|
if self.config.use_indicators: |
|
|
|
|
|
batch_size, token_len, _ = tokens.shape |
|
padding_tensor = torch.zeros( |
|
size=(batch_size, token_len, 2), |
|
dtype=tokens.dtype, |
|
device=tokens.device, |
|
layout=tokens.layout, |
|
requires_grad=False |
|
) |
|
tokens = torch.cat((tokens, padding_tensor), dim=2) |
|
|
|
|
|
begin_indicator = torch.zeros( |
|
size=(batch_size, 1), |
|
dtype=torch.long, |
|
device=tokens.device, |
|
requires_grad=False |
|
) + self.config.vocab_size - 2 |
|
begin_indicator_token = F.one_hot( |
|
begin_indicator, num_classes=self.config.vocab_size).to(dtype=tokens.dtype) |
|
end_indicator = torch.zeros( |
|
size=(batch_size, 1), |
|
dtype=torch.long, |
|
device=tokens.device, |
|
requires_grad=False |
|
) + self.config.vocab_size - 1 |
|
end_indicator_token = F.one_hot( |
|
end_indicator, num_classes=self.config.vocab_size).to(dtype=tokens.dtype) |
|
tokens = torch.cat((begin_indicator_token, tokens, end_indicator_token), dim=1) |
|
return tokens |
|
|
|
|
|
class SiglipVisualTokenizer(BaseVisualTokenizer): |
|
config_class = SiglipVisualTokenizerConfig |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["SiglipVisionTransformer"] |
|
_image_processor_class = SiglipImageProcessor |
|
_image_processor_kwargs = {} |
|
_backbone_class = SiglipVisionModel |
|
_backbone_name_or_path = "google/siglip-so400m-patch14-384" |
|
|
|
def __init__(self, config: SiglipVisualTokenizerConfig = None, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
head_dim = self.config.vocab_size |
|
if self.config.use_indicators: |
|
head_dim -= 2 |
|
if self.config.hd_booster is None: |
|
self.head = torch.nn.Sequential( |
|
torch.nn.Linear( |
|
self.backbone.config.hidden_size * self.config.hidden_stride * self.config.hidden_stride, |
|
head_dim, |
|
bias=False |
|
), |
|
torch.nn.LayerNorm(head_dim) |
|
) |
|
elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']: |
|
self.head = torch.nn.Sequential( |
|
torch.nn.Linear( |
|
self.backbone.config.hidden_size * self.config.hidden_stride * self.config.hidden_stride * 2, |
|
head_dim, |
|
bias=False |
|
), |
|
torch.nn.LayerNorm(head_dim) |
|
) |
|
else: |
|
raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}') |
|
|
|
def get_image_size(self): |
|
height = self.image_processor.size["height"] |
|
width = self.image_processor.size["width"] |
|
return height, width |
|
|
|
def encode(self, pixel_values): |
|
if self.config.hd_booster is None: |
|
output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True) |
|
features = output.hidden_states[-1] |
|
if self.config.drop_cls_token: |
|
features = features[:, 1:, :] |
|
elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']: |
|
n, c, side, _ = pixel_values.shape |
|
if self.config.hd_booster == 's2wrapper-adaptive': |
|
pixel_values_mask = torch.isinf(pixel_values) |
|
pixel_values = torch.masked_fill(pixel_values, pixel_values_mask, 0.0) |
|
pixel_values = pixel_values.reshape(n * 5, c // 5, side, side) |
|
output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True) |
|
features = output.hidden_states[-1] |
|
if self.config.drop_cls_token: |
|
features = features[:, 1:, :] |
|
_, l, d = features.shape |
|
features = features.reshape(n, 5, l, d) |
|
features_overall = features[:, 0, :, :] |
|
features_parts = features[:, 1:, :, :] |
|
sqrt_l = int(l ** 0.5) |
|
assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square." |
|
features_parts = features_parts.reshape(n, 4, sqrt_l, sqrt_l, d) |
|
features_top = torch.concat( |
|
[features_parts[:, 0, :, :, :], features_parts[:, 1, :, :, :]], dim=-2) |
|
features_bottom = torch.concat( |
|
[features_parts[:, 2, :, :, :], features_parts[:, 3, :, :, :]], dim=-2) |
|
features_merge = torch.concat([features_top, features_bottom], dim=-3) |
|
features_pool = F.interpolate( |
|
features_merge.permute(0, 3, 1, 2).to(torch.float32), |
|
size=sqrt_l, |
|
mode='area' |
|
) |
|
features_pool = features_pool.flatten(2).permute(0, 2, 1).to(features.dtype) |
|
if self.config.hd_booster == 's2wrapper-adaptive': |
|
features_pool_mask = torch.unsqueeze( |
|
torch.unsqueeze(pixel_values_mask[:, -1, -1, -1], dim=-1), dim=-1) |
|
features_pool = torch.masked_fill(features_pool, features_pool_mask, 0.0) |
|
features = torch.cat([features_overall, features_pool], dim=-1) |
|
else: |
|
raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}') |
|
|
|
|
|
|
|
if self.config.hidden_stride > 1: |
|
n, l, d = features.shape |
|
sqrt_l = int(l ** 0.5) |
|
assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square." |
|
assert l % (self.config.hidden_stride ** 2) == 0, \ |
|
"The token sequence length should be divisible by `hidden_stride**2`." |
|
features = features.reshape(n, sqrt_l, sqrt_l, d) |
|
features = features.reshape(n, sqrt_l // self.config.hidden_stride, self.config.hidden_stride, |
|
sqrt_l // self.config.hidden_stride, self.config.hidden_stride, d) |
|
features = features.permute(0, 1, 3, 2, 4, 5) |
|
features = features.flatten(3) |
|
features = features.reshape(n, l // (self.config.hidden_stride * self.config.hidden_stride), |
|
self.config.hidden_stride * self.config.hidden_stride * d) |
|
|
|
return features |
|
|
|
def forward(self, pixel_values) -> Tensor: |
|
features = self.encode(pixel_values) |
|
logits = self.head(features) |
|
tokens = self.tokenize(logits) |
|
if self.config.use_indicators: |
|
|
|
|
|
batch_size, token_len, _ = tokens.shape |
|
padding_tensor = torch.zeros( |
|
size=(batch_size, token_len, 2), |
|
dtype=tokens.dtype, |
|
device=tokens.device, |
|
layout=tokens.layout, |
|
requires_grad=False |
|
) |
|
tokens = torch.cat((tokens, padding_tensor), dim=2) |
|
|
|
|
|
begin_indicator = torch.zeros( |
|
size=(batch_size, 1), |
|
dtype=torch.long, |
|
device=tokens.device, |
|
requires_grad=False |
|
) + self.config.vocab_size - 2 |
|
begin_indicator_token = F.one_hot( |
|
begin_indicator, num_classes=self.config.vocab_size).to(dtype=tokens.dtype) |
|
end_indicator = torch.zeros( |
|
size=(batch_size, 1), |
|
dtype=torch.long, |
|
device=tokens.device, |
|
requires_grad=False |
|
) + self.config.vocab_size - 1 |
|
end_indicator_token = F.one_hot( |
|
end_indicator, num_classes=self.config.vocab_size).to(dtype=tokens.dtype) |
|
tokens = torch.cat((begin_indicator_token, tokens, end_indicator_token), dim=1) |
|
return tokens |
|
|
|
|
|
AutoModel.register(ClipVisualTokenizerConfig, ClipVisualTokenizer) |
|
AutoModel.register(SiglipVisualTokenizerConfig, SiglipVisualTokenizer) |
|
|
|
|
|
|
|
|
|
|
|
class VisualEmbedding(torch.nn.Embedding): |
|
def forward(self, input: Tensor) -> Tensor: |
|
if any((isinstance(input, LongTensor), isinstance(input, IntTensor))): |
|
return super().forward(input) |
|
return torch.matmul(input, self.weight) |
|
|
|
|
|
class OvisPreTrainedModel(PreTrainedModel): |
|
config_class = OvisConfig |
|
base_model_prefix = "ovis" |
|
|
|
|
|
class Ovis(OvisPreTrainedModel): |
|
|
|
def __init__(self, config: OvisConfig, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
self.llm = AutoModelForCausalLM.from_config(self.config.llm_config, attn_implementation="sdpa") |
|
assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch" |
|
self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path) |
|
self.visual_tokenizer = AutoModel.from_config( |
|
self.config.visual_tokenizer_config, |
|
image_processor_name_or_path=self.config.name_or_path |
|
) |
|
self.vte = VisualEmbedding( |
|
self.config.visual_tokenizer_config.vocab_size, |
|
self.config.hidden_size, |
|
device=self.visual_tokenizer.device, |
|
dtype=self.visual_tokenizer.dtype |
|
) |
|
|
|
def _merge_modules(modules_list: tuple): |
|
merged_modules = [] |
|
for modules in modules_list: |
|
merged_modules.extend(modules if modules else []) |
|
return merged_modules |
|
|
|
self._no_split_modules = _merge_modules( |
|
(self.llm._no_split_modules, self.visual_tokenizer._no_split_modules)) |
|
self._skip_keys_device_placement = self.llm._skip_keys_device_placement |
|
self._keep_in_fp32_modules = _merge_modules( |
|
(self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules)) |
|
self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable)) |
|
self.supports_gradient_checkpointing = all( |
|
(self.llm.supports_gradient_checkpointing, self.visual_tokenizer.supports_gradient_checkpointing)) |
|
self._supports_flash_attn_2 = all( |
|
(self.llm._supports_flash_attn_2, self.visual_tokenizer._supports_flash_attn_2)) |
|
self._supports_sdpa = all((self.llm._supports_sdpa, self.visual_tokenizer._supports_sdpa)) |
|
|
|
def get_text_tokenizer(self): |
|
return self.text_tokenizer |
|
|
|
def get_visual_tokenizer(self): |
|
return self.visual_tokenizer |
|
|
|
def get_llm(self): |
|
return self.llm |
|
|
|
def get_vte(self): |
|
return self.vte |
|
|
|
def get_wte(self): |
|
return self.llm.get_input_embeddings() |
|
|
|
def get_conversation_formatter(self) -> ConversationFormatter: |
|
if getattr(self, 'conversation_formatter', None) is None: |
|
self.conversation_formatter = getattr( |
|
import_module(".configuration_ovis", __package__), |
|
self.config.conversation_formatter_class |
|
)(self.text_tokenizer) |
|
return self.conversation_formatter |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
labels: Optional[torch.Tensor], |
|
pixel_values: List[Optional[torch.Tensor]], |
|
**kwargs |
|
): |
|
assert self.training, "`forward` can only be used in training. For inference, use `generate`." |
|
_, inputs_embeds, labels, attention_mask = self.merge_multimodal( |
|
text_input_ids=input_ids, |
|
text_attention_masks=attention_mask, |
|
text_labels=labels, |
|
pixel_values=pixel_values |
|
) |
|
return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs) |
|
|
|
def merge_multimodal( |
|
self, |
|
text_input_ids: torch.Tensor, |
|
text_attention_masks: torch.Tensor, |
|
text_labels: Optional[torch.Tensor], |
|
pixel_values: List[Optional[torch.Tensor]] |
|
): |
|
input_device = text_input_ids.device |
|
if self.training: |
|
|
|
|
|
|
|
num_images = [x.shape[0] for x in pixel_values] |
|
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0)) |
|
visual_embeds = torch.split( |
|
self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device), |
|
split_size_or_sections=num_images, |
|
dim=0 |
|
) |
|
visual_input_ids = torch.split( |
|
torch.argmax(visual_tokens, dim=-1).to(device=input_device), |
|
split_size_or_sections=num_images, |
|
dim=0 |
|
) |
|
visual_labels = [ |
|
torch.full( |
|
x.shape, IGNORE_INDEX, dtype=torch.long, device=input_device |
|
) for x in visual_input_ids |
|
] |
|
else: |
|
|
|
num_images = [x.shape[0] if x is not None else 0 for x in pixel_values] |
|
if sum(num_images) > 0: |
|
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0)) |
|
visual_embeds = torch.split( |
|
self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device), |
|
split_size_or_sections=num_images, |
|
dim=0 |
|
) |
|
visual_input_ids = torch.split( |
|
torch.argmax(visual_tokens, dim=-1).to(device=input_device), |
|
split_size_or_sections=num_images, |
|
dim=0 |
|
) |
|
visual_labels = [ |
|
torch.full( |
|
x.shape, IGNORE_INDEX, dtype=torch.long, device=input_device |
|
) for x in visual_input_ids |
|
] |
|
else: |
|
|
|
visual_embeds = [None] * len(num_images) |
|
visual_input_ids = [None] * len(num_images) |
|
visual_labels = [None] * len(num_images) |
|
|
|
text_labels = torch.full(text_input_ids.shape, IGNORE_INDEX, dtype=torch.long, device=input_device) |
|
|
|
input_embeds = [] |
|
attention_masks = [] |
|
labels = [] |
|
for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip( |
|
text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels |
|
): |
|
image_token_mask = torch.eq(text_input_id, IMAGE_TOKEN_INDEX) |
|
text_embed = self.get_wte()(torch.masked_fill(text_input_id, image_token_mask, 0)) |
|
image_token_positions = torch.where(image_token_mask)[0].tolist() |
|
if len(image_token_positions) > 0: |
|
input_embed_parts = [] |
|
attention_mask_parts = [] |
|
label_parts = [] |
|
prev_image_token_position = -1 |
|
for index, image_token_position in enumerate(image_token_positions): |
|
input_embed_parts.append( |
|
text_embed[prev_image_token_position + 1:image_token_position, :]) |
|
label_parts.append( |
|
text_label[prev_image_token_position + 1:image_token_position]) |
|
attention_mask_parts.append( |
|
text_attention_mask[prev_image_token_position + 1:image_token_position]) |
|
input_embed_parts.append(visual_embed[index]) |
|
attention_mask_parts.append( |
|
torch.ones_like(visual_label[index], dtype=torch.bool)) |
|
label_parts.append(visual_label[index]) |
|
prev_image_token_position = image_token_position |
|
if prev_image_token_position + 1 < text_input_id.shape[0]: |
|
input_embed_parts.append( |
|
text_embed[prev_image_token_position + 1:, :]) |
|
attention_mask_parts.append( |
|
text_attention_mask[prev_image_token_position + 1:]) |
|
label_parts.append( |
|
text_label[prev_image_token_position + 1:]) |
|
input_embed = torch.cat(input_embed_parts, dim=0) |
|
attention_mask = torch.cat(attention_mask_parts, dim=0) |
|
label = torch.cat(label_parts, dim=0) |
|
else: |
|
input_embed = text_embed |
|
attention_mask = text_attention_mask |
|
label = text_label |
|
if self.training: |
|
|
|
|
|
input_embed += torch.sum(visual_embed * 0.0) |
|
input_embeds.append(input_embed) |
|
attention_masks.append(attention_mask) |
|
labels.append(label) |
|
|
|
batch_input_embeds = torch.nn.utils.rnn.pad_sequence( |
|
input_embeds, batch_first=True, padding_value=0.0)[:, :self.config.multimodal_max_length, :] |
|
batch_attention_mask = torch.nn.utils.rnn.pad_sequence( |
|
attention_masks, batch_first=True, padding_value=False)[:, :self.config.multimodal_max_length] |
|
batch_labels = torch.nn.utils.rnn.pad_sequence( |
|
labels, batch_first=True, padding_value=IGNORE_INDEX)[:, :self.config.multimodal_max_length] |
|
|
|
return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask |
|
|
|
def save_pretrained( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
is_main_process: bool = True, |
|
state_dict: Optional[dict] = None, |
|
save_function: Callable = torch.save, |
|
push_to_hub: bool = False, |
|
max_shard_size: Union[int, str] = "5GB", |
|
safe_serialization: bool = True, |
|
variant: Optional[str] = None, |
|
token: Optional[Union[str, bool]] = None, |
|
save_peft_format: bool = True, |
|
**kwargs |
|
): |
|
super().save_pretrained(save_directory, |
|
is_main_process=is_main_process, |
|
state_dict=state_dict, |
|
save_function=save_function, |
|
safe_serialization=safe_serialization) |
|
self.get_text_tokenizer().save_pretrained(save_directory) |
|
self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _get_hybrid_cache_for_llm(self, max_batch_size: int, max_cache_len: int): |
|
cache_cls = HybridCache |
|
llm = self.get_llm() |
|
|
|
need_new_cache = ( |
|
not hasattr(llm, "_cache") |
|
or (not isinstance(llm._cache, cache_cls)) |
|
or llm._cache.max_batch_size != max_batch_size |
|
or llm._cache.max_cache_len < max_cache_len |
|
) |
|
|
|
if need_new_cache: |
|
if hasattr(llm.config, "_pre_quantization_dtype"): |
|
cache_dtype = llm.config._pre_quantization_dtype |
|
else: |
|
cache_dtype = llm.dtype |
|
llm._cache = cache_cls( |
|
config=llm.config, |
|
max_batch_size=max_batch_size, |
|
max_cache_len=max_cache_len, |
|
device=llm.device, |
|
dtype=cache_dtype, |
|
) |
|
else: |
|
llm._cache.reset() |
|
return llm._cache |
|
|
|
|
|
def generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
**kwargs |
|
) -> Union[GenerateOutput, torch.LongTensor]: |
|
assert inputs.shape[0] == 1, 'Currently, only support `batch_size=1`' |
|
_, inputs_embeds, labels, attention_mask = self.merge_multimodal( |
|
text_input_ids=inputs, |
|
text_attention_masks=kwargs.pop('attention_mask'), |
|
text_labels=None, |
|
pixel_values=kwargs.pop('pixel_values') |
|
) |
|
if getattr(self.generation_config, 'cache_implementation') == 'hybrid': |
|
kwargs['past_key_values'] = self._get_hybrid_cache_for_llm( |
|
getattr(kwargs, "num_beams", 1), kwargs['max_new_tokens'] + inputs_embeds.shape[-2]) |
|
self.get_llm()._supports_cache_class = True |
|
kwargs['cache_implementation'] = None |
|
|
|
return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs) |
|
|