--- base_model: sentence-transformers/all-mpnet-base-v2 datasets: - s2orc - flax-sentence-embeddings/stackexchange_xml - ms_marco - gooaq - yahoo_answers_topics - code_search_net - search_qa - eli5 - snli - multi_nli - wikihow - natural_questions - trivia_qa - embedding-data/sentence-compression - embedding-data/flickr30k-captions - embedding-data/altlex - embedding-data/simple-wiki - embedding-data/QQP - embedding-data/SPECTER - embedding-data/PAQ_pairs - embedding-data/WikiAnswers language: en library_name: sentence-transformers license: apache-2.0 pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - openvino - nncf - 8-bit base_model_relation: quantized --- This model is a quantized version of [`sentence-transformers/all-mpnet-base-v2`](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) and is converted to the OpenVINO format. This model was obtained via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space with [optimum-intel](https://github.com/huggingface/optimum-intel). First make sure you have `optimum-intel` installed: ```bash pip install optimum[openvino] ``` To load your model you can do as follows: ```python from optimum.intel import OVModelForFeatureExtraction model_id = "AIFunOver/all-mpnet-base-v2-openvino-8bit" model = OVModelForFeatureExtraction.from_pretrained(model_id) ```