Safetensors
llama3_SAE
custom_code
File size: 28,793 Bytes
a29b74a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
from typing import List, Optional, Tuple, Union, Callable, Any

import torch
import torch.nn as nn
import torch.nn.functional as F

try:
    from configuration_llama3_SAE import LLama3_SAE_Config
except:
    from .configuration_llama3_SAE import LLama3_SAE_Config

from transformers import (
    LlamaPreTrainedModel,
    LlamaModel,
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.cache_utils import Cache
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
    logging,
    replace_return_docstrings,
)

import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class LLama3_SAE(LlamaPreTrainedModel):
    config_class = LLama3_SAE_Config
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: LLama3_SAE_Config):
        super().__init__(config)
        self.model = LlamaModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        if config.activation == "topk":
            if isinstance(config.activation_k, int):
                activation = TopK(torch.tensor(config.activation_k))
            else:
                activation = TopK(config.activation_k)
        elif config.activation == "topk-tanh":
            if isinstance(config.activation_k, int):
                activation = TopK(torch.tensor(config.activation_k), nn.Tanh())
            else:
                activation = TopK(config.activation_k, nn.Tanh())
        elif config.activation == "topk-sigmoid":
            if isinstance(config.activation_k, int):
                activation = TopK(torch.tensor(config.activation_k), nn.Sigmoid())
            else:
                activation = TopK(config.activation_k, nn.Sigmoid())
        elif config.activation == "jumprelu":
            activation = JumpReLu()
        elif config.activation == "relu":
            activation = "ReLU"
        elif config.activation == "identity":
            activation = "Identity"
        else:
            raise (
                NotImplementedError,
                f"Activation '{config.activation}' not implemented.",
            )

        self.SAE = Autoencoder(
            n_inputs=config.n_inputs,
            n_latents=config.n_latents,
            activation=activation,
            tied=False,
            normalize=True,
        )

        self.hook = HookedTransformer_with_SAE_suppresion(
            block=config.hook_block_num,
            sae=self.SAE,
            mod_features=config.mod_features,
            mod_threshold=config.mod_threshold,
            mod_replacement=config.mod_replacement,
            mod_scaling=config.mod_scaling,
        ).register_with(self.model, config.site)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, LlamaForCausalLM

        >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
        >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]
        if self.config.pretraining_tp > 1:
            lm_head_slices = self.lm_head.weight.split(
                self.vocab_size // self.config.pretraining_tp, dim=0
            )
            logits = [
                F.linear(hidden_states, lm_head_slices[i])
                for i in range(self.config.pretraining_tp)
            ]
            logits = torch.cat(logits, dim=-1)
        else:
            logits = self.lm_head(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()

            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss(reduction="none")
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)
            loss = loss.view(logits.size(0), -1)
            mask = loss != 0
            loss = loss.sum(dim=-1) / mask.sum(dim=-1)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        use_cache=True,
        **kwargs,
    ):
        past_length = 0
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                past_length = (
                    cache_position[0]
                    if cache_position is not None
                    else past_key_values.get_seq_length()
                )
                max_cache_length = (
                    torch.tensor(
                        past_key_values.get_max_length(), device=input_ids.device
                    )
                    if past_key_values.get_max_length() is not None
                    else None
                )
                cache_length = (
                    past_length
                    if max_cache_length is None
                    else torch.min(max_cache_length, past_length)
                )
            # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
            if (
                attention_mask is not None
                and attention_mask.shape[1] > input_ids.shape[1]
            ):
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
            # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
            # TODO: use `next_tokens` directly instead.
            model_inputs = {"input_ids": input_ids.contiguous()}

        input_length = (
            position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
        )
        if cache_position is None:
            cache_position = torch.arange(
                past_length, past_length + input_length, device=input_ids.device
            )
        elif use_cache:
            cache_position = cache_position[-input_length:]

        model_inputs.update(
            {
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(
                    past_state.index_select(0, beam_idx.to(past_state.device))
                    for past_state in layer_past
                ),
            )
        return reordered_past


def LN(
    x: torch.Tensor, eps: float = 1e-5
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    mu = x.mean(dim=-1, keepdim=True)
    x = x - mu
    std = x.std(dim=-1, keepdim=True)
    x = x / (std + eps)
    return x, mu, std


class Autoencoder(nn.Module):
    """Sparse autoencoder

    Implements:
        latents = activation(encoder(x - pre_bias) + latent_bias)
        recons = decoder(latents) + pre_bias
    """

    def __init__(
        self,
        n_latents: int,
        n_inputs: int,
        activation: Callable = nn.ReLU(),
        tied: bool = False,
        normalize: bool = False,
    ) -> None:
        """
        :param n_latents: dimension of the autoencoder latent
        :param n_inputs: dimensionality of the original data (e.g residual stream, number of MLP hidden units)
        :param activation: activation function
        :param tied: whether to tie the encoder and decoder weights
        """
        super().__init__()
        self.n_inputs = n_inputs
        self.n_latents = n_latents

        self.pre_bias = nn.Parameter(torch.zeros(n_inputs))
        self.encoder: nn.Module = nn.Linear(n_inputs, n_latents, bias=False)
        self.latent_bias = nn.Parameter(torch.zeros(n_latents))
        self.activation = activation

        if isinstance(activation, JumpReLu):
            self.threshold = nn.Parameter(torch.empty(n_latents))
            torch.nn.init.constant_(self.threshold, 0.001)
            self.forward = self.forward_jumprelu
        elif isinstance(activation, TopK):
            self.forward = self.forward_topk
        else:
            logger.warning(
                f"Using TopK forward function even if activation is not TopK, but is {activation}"
            )
            self.forward = self.forward_topk

        if tied:
            # self.decoder: nn.Linear | TiedTranspose = TiedTranspose(self.encoder)
            self.decoder = nn.Linear(n_latents, n_inputs, bias=False)
            self.decoder.weight.data = self.encoder.weight.data.T.clone()
        else:
            self.decoder = nn.Linear(n_latents, n_inputs, bias=False)
        self.normalize = normalize

    def encode_pre_act(
        self, x: torch.Tensor, latent_slice: slice = slice(None)
    ) -> torch.Tensor:
        """
        :param x: input data (shape: [batch, n_inputs])
        :param latent_slice: slice of latents to compute
            Example: latent_slice = slice(0, 10) to compute only the first 10 latents.
        :return: autoencoder latents before activation (shape: [batch, n_latents])
        """
        x = x - self.pre_bias
        latents_pre_act = F.linear(
            x, self.encoder.weight[latent_slice], self.latent_bias[latent_slice]
        )
        return latents_pre_act

    def preprocess(self, x: torch.Tensor) -> tuple[torch.Tensor, dict[str, Any]]:
        if not self.normalize:
            return x, dict()
        x, mu, std = LN(x)
        return x, dict(mu=mu, std=std)

    def encode(self, x: torch.Tensor) -> tuple[torch.Tensor, dict[str, Any]]:
        """
        :param x: input data (shape: [batch, n_inputs])
        :return: autoencoder latents (shape: [batch, n_latents])
        """
        x, info = self.preprocess(x)
        return self.activation(self.encode_pre_act(x)), info

    def decode(
        self, latents: torch.Tensor, info: dict[str, Any] | None = None
    ) -> torch.Tensor:
        """
        :param latents: autoencoder latents (shape: [batch, n_latents])
        :return: reconstructed data (shape: [batch, n_inputs])
        """
        ret = self.decoder(latents) + self.pre_bias
        if self.normalize:
            assert info is not None
            ret = ret * info["std"] + info["mu"]
        return ret

    def forward_topk(
        self, x: torch.Tensor
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        :param x: input data (shape: [batch, n_inputs])
        :return:  autoencoder latents pre activation (shape: [batch, n_latents])
                  autoencoder latents (shape: [batch, n_latents])
                  reconstructed data (shape: [batch, n_inputs])
        """
        x, info = self.preprocess(x)
        latents_pre_act = self.encode_pre_act(x)
        latents = self.activation(latents_pre_act)
        recons = self.decode(latents, info)

        return latents_pre_act, latents, recons

    def forward_jumprelu(
        self, x: torch.Tensor
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        :param x: input data (shape: [batch, n_inputs])
        :return:  autoencoder latents pre activation (shape: [batch, n_latents])
                  autoencoder latents (shape: [batch, n_latents])
                  reconstructed data (shape: [batch, n_inputs])
        """
        x, info = self.preprocess(x)
        latents_pre_act = self.encode_pre_act(x)
        latents = self.activation(F.relu(latents_pre_act), torch.exp(self.threshold))
        recons = self.decode(latents, info)

        return latents_pre_act, latents, recons


class TiedTranspose(nn.Module):
    def __init__(self, linear: nn.Linear):
        super().__init__()
        self.linear = linear

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        assert self.linear.bias is None
        # torch.nn.parameter.Parameter(layer_e.weights.T)
        return F.linear(x, self.linear.weight.t(), None)

    @property
    def weight(self) -> torch.Tensor:
        return self.linear.weight.t()

    @property
    def bias(self) -> torch.Tensor:
        return self.linear.bias


class TopK(nn.Module):
    def __init__(self, k: int, postact_fn: Callable = nn.ReLU()) -> None:
        super().__init__()
        self.k = k
        self.postact_fn = postact_fn

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        topk = torch.topk(x, k=self.k, dim=-1)
        values = self.postact_fn(topk.values)
        # make all other values 0
        result = torch.zeros_like(x)
        result.scatter_(-1, topk.indices, values)
        return result


class JumpReLu(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input, threshold):
        return JumpReLUFunction.apply(input, threshold)


class HeavyStep(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input, threshold):
        return HeavyStepFunction.apply(input, threshold)


def rectangle(x):
    return (x > -0.5) & (x < 0.5)


class JumpReLUFunction(torch.autograd.Function):
    @staticmethod
    def forward(input, threshold):
        output = input * (input > threshold)
        return output

    @staticmethod
    def setup_context(ctx, inputs, output):
        input, threshold = inputs
        ctx.save_for_backward(input, threshold)

    @staticmethod
    def backward(ctx, grad_output):
        bandwidth = 0.001
        # bandwidth = 0.0001
        input, threshold = ctx.saved_tensors
        grad_input = grad_threshold = None

        grad_input = input > threshold
        grad_threshold = (
            -(threshold / bandwidth)
            * rectangle((input - threshold) / bandwidth)
            * grad_output
        )

        return grad_input, grad_threshold


class HeavyStepFunction(torch.autograd.Function):
    @staticmethod
    def forward(input, threshold):
        output = input * threshold
        return output

    @staticmethod
    def setup_context(ctx, inputs, output):
        input, threshold = inputs
        ctx.save_for_backward(input, threshold)

    @staticmethod
    def backward(ctx, grad_output):
        bandwidth = 0.001
        # bandwidth = 0.0001
        input, threshold = ctx.saved_tensors
        grad_input = grad_threshold = None

        grad_input = torch.zeros_like(input)
        grad_threshold = (
            -(1.0 / bandwidth)
            * rectangle((input - threshold) / bandwidth)
            * grad_output
        )

        return grad_input, grad_threshold


ACTIVATIONS_CLASSES = {
    "ReLU": nn.ReLU,
    "Identity": nn.Identity,
    "TopK": TopK,
    "JumpReLU": JumpReLu,
}


class HookedTransformer_with_SAE:
    """Auxilliary class used to extract mlp activations from transformer models."""

    def __init__(self, block: int, sae) -> None:
        self.block = block
        self.sae = sae

        self.remove_handle = (
            None  # Can be used to remove this hook from the model again
        )

        self._features = None

    def register_with(self, model):
        # At the moment only activations from Feed Forward MLP layer
        self.remove_handle = model.layers[self.block].mlp.register_forward_hook(self)

        return self

    def pop(self) -> torch.Tensor:
        """Remove and return extracted feature from this hook.

        We only allow access to the features this way to not have any lingering references to them.
        """
        assert self._features is not None, "Feature extractor was not called yet!"
        features = self._features
        self._features = None
        return features

    def __call__(self, module, inp, outp) -> None:
        self._features = outp
        return self.sae(outp)[2]


class HookedTransformer_with_SAE_suppresion:
    """Auxilliary class used to extract mlp activations from transformer models."""

    def __init__(
        self,
        block: int,
        sae: Autoencoder,
        mod_features: list = None,
        mod_threshold: list = None,
        mod_replacement: list = None,
        mod_scaling: list = None,
        mod_balance: bool = False,
        multi_feature: bool = False,
    ) -> None:
        self.block = block
        self.sae = sae

        self.remove_handle = (
            None  # Can be used to remove this hook from the model again
        )

        self._features = None
        self.mod_features = mod_features
        self.mod_threshold = mod_threshold
        self.mod_replacement = mod_replacement
        self.mod_scaling = mod_scaling
        self.mod_balance = mod_balance
        self.mod_vector = None
        self.mod_vec_factor = 1.0

        if multi_feature:
            self.modify = self.modify_list
        else:
            self.modify = self.modify_single

        if isinstance(self.sae.activation, JumpReLu):
            logger.info("Setting __call__ function for JumpReLU.")
            setattr(self, "call", self.__call__jumprelu)
        elif isinstance(self.sae.activation, TopK):
            logger.info("Setting __call__ function for TopK.")
            setattr(self, "call", self.__call__topk)
        else:
            logger.warning(
                f"Using TopK forward function even if activation is not TopK, but is {self.sae.activation}"
            )
            setattr(self, "call", self.__call__topk)

    def register_with(self, model, site="mlp"):
        self.site = site
        # Decision on where to extract activations from
        if site == "mlp":  # output of the FF module of block
            self.remove_handle = model.layers[self.block].mlp.register_forward_hook(
                self
            )
        elif (
            site == "block"
        ):  # output of the residual connection AFTER it is added to the FF output
            self.remove_handle = model.layers[self.block].register_forward_hook(self)
        elif site == "attention":
            raise NotImplementedError
        else:
            raise NotImplementedError

        # self.remove_handle = model.model.layers[self.block].mlp.act_fn.register_forward_hook(self)

        return self

    def modify_list(self, latents: torch.Tensor) -> torch.Tensor:
        if self.mod_replacement is not None:
            for feat, thresh, mod in zip(
                self.mod_features, self.mod_threshold, self.mod_replacement
            ):
                latents[:, :, feat][latents[:, :, feat] > thresh] = mod
        elif self.mod_scaling is not None:
            for feat, thresh, mod in zip(
                self.mod_features, self.mod_threshold, self.mod_scaling
            ):
                latents[:, :, feat][latents[:, :, feat] > thresh] *= mod
        elif self.mod_vector is not None:
            latents = latents + self.mod_vec_factor * self.mod_vector
        else:
            pass

        return latents

    def modify_single(self, latents: torch.Tensor) -> torch.Tensor:
        old_cond_feats = latents[:, :, self.mod_features]
        if self.mod_replacement is not None:
            # latents[:, :, self.mod_features][
            #     latents[:, :, self.mod_features] > self.mod_threshold
            # ] = self.mod_replacement
            latents[:, :, self.mod_features] = self.mod_replacement
        elif self.mod_scaling is not None:
            latents_scaled = latents.clone()
            latents_scaled[:, :, self.mod_features][
                latents[:, :, self.mod_features] > 0
            ] *= self.mod_scaling
            latents_scaled[:, :, self.mod_features][
                latents[:, :, self.mod_features] < 0
            ] *= -1 * self.mod_scaling
            latents = latents_scaled
            # latents[:, :, self.mod_features] *= self.mod_scaling
        elif self.mod_vector is not None:
            latents = latents + self.mod_vec_factor * self.mod_vector
        else:
            pass

        if self.mod_balance:
            # logger.warning("The balancing does not work yet!!!")
            # TODO: Look into it more closely, not sure if this is correct
            num_feat = latents.shape[2] - 1
            diff = old_cond_feats - latents[:, :, self.mod_features]
            if self.mod_features != 0:
                latents[:, :, : self.mod_features] += (diff / num_feat)[:, :, None]
            latents[:, :, self.mod_features + 1 :] += (diff / num_feat)[:, :, None]

        return latents

    def pop(self) -> torch.Tensor:
        """Remove and return extracted feature from this hook.

        We only allow access to the features this way to not have any lingering references to them.
        """
        assert self._features is not None, "Feature extractor was not called yet!"
        if isinstance(self._features, tuple):
            features = self._features[0]
        else:
            features = self._features
        self._features = None
        return features

    def __call__topk(self, module, inp, outp) -> torch.Tensor:
        self._features = outp
        if isinstance(self._features, tuple):
            features = self._features[0]
        else:
            features = self._features

        if self.mod_features is None:
            recons = features
        else:
            x, info = self.sae.preprocess(features)
            latents_pre_act = self.sae.encode_pre_act(x)
            latents = self.sae.activation(latents_pre_act)
            # latents[:, :, self.mod_features] = F.sigmoid(
            #     latents_pre_act[:, :, self.mod_features]
            # )
            # latents[:, :, self.mod_features] = torch.abs(latents_pre_act[:, :, self.mod_features])
            # latents[:, :, self.mod_features] = latents_pre_act[:, :, self.mod_features]
            mod_latents = self.modify(latents)
            # mod_latents[:, :, self.mod_features] = F.sigmoid(
            #     mod_latents[:, :, self.mod_features]
            # )

            recons = self.sae.decode(mod_latents, info)

        if isinstance(self._features, tuple):
            outp = list(outp)
            outp[0] = recons
            return tuple(outp)
        else:
            return recons

    def __call__jumprelu(self, module, inp, outp) -> torch.Tensor:
        self._features = outp
        if self.mod_features is None:
            recons = outp
        else:
            x, info = self.sae.preprocess(outp)
            latents_pre_act = self.sae.encode_pre_act(x)
            latents = self.sae.activation(
                F.relu(latents_pre_act), torch.exp(self.sae.threshold)
            )
            latents[:, :, self.mod_features] = latents_pre_act[:, :, self.mod_features]
            mod_latents = self.modify(latents)

            recons = self.sae.decode(mod_latents, info)

        return recons

    def __call__(self, module, inp, outp) -> torch.Tensor:
        return self.call(module, inp, outp)