--- license: mit base_model: dbmdz/bert-base-turkish-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: results results: [] --- # results This model is a fine-tuned version of [dbmdz/bert-base-turkish-uncased](https://huggingface.co/dbmdz/bert-base-turkish-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0063 - Accuracy: 0.9984 - F1: 0.9988 - Precision: 0.9995 - Recall: 0.9980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0659 | 1.0 | 169 | 0.0076 | 0.9978 | 0.9983 | 0.9975 | 0.9990 | | 0.004 | 2.0 | 338 | 0.0063 | 0.9984 | 0.9988 | 0.9995 | 0.9980 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1