File size: 2,091 Bytes
c1bbfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ded729
 
6646af2
1ded729
c1bbfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887a2dc
28f9a3c
65bddd0
3c10e90
a9465ef
6646af2
d7fde71
1ded729
c1bbfe1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
base_model: bert-base-chinese
tags:
- generated_from_keras_callback
model-index:
- name: AIYIYA/my_wr
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# AIYIYA/my_wr

This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.3017
- Validation Loss: 1.2447
- Train Accuracy: 0.7895
- Epoch: 7

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 120, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 2.8885     | 2.6740          | 0.1316         | 0     |
| 2.5028     | 2.3158          | 0.4737         | 1     |
| 2.2462     | 2.0331          | 0.6579         | 2     |
| 1.9850     | 1.7608          | 0.7632         | 3     |
| 1.7761     | 1.6215          | 0.7632         | 4     |
| 1.6159     | 1.4274          | 0.7895         | 5     |
| 1.3905     | 1.3232          | 0.7895         | 6     |
| 1.3017     | 1.2447          | 0.7895         | 7     |


### Framework versions

- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3