File size: 21,174 Bytes
6dd3ebe
 
 
 
 
 
4cc7625
 
 
6dd3ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import numpy as np

# Modified from: https://github.com/thuml/Time-Series-Library
# Modified by Shourya Bose, shbose@ucsc.edu

class AutoCorrelation(nn.Module):
    """
    AutoCorrelation Mechanism with the following two phases:
    (1) period-based dependencies discovery
    (2) time delay aggregation
    This block can replace the self-attention family mechanism seamlessly.
    """

    def __init__(self, mask_flag=True, factor=1, scale=None, attention_dropout=0.1, output_attention=False):
        super(AutoCorrelation, self).__init__()
        self.factor = factor
        self.scale = scale
        self.mask_flag = mask_flag
        self.output_attention = output_attention
        self.dropout = nn.Dropout(attention_dropout)

    def time_delay_agg_training(self, values, corr):
        """
        SpeedUp version of Autocorrelation (a batch-normalization style design)
        This is for the training phase.
        """
        head = values.shape[1]
        channel = values.shape[2]
        length = values.shape[3]
        # find top k
        top_k = int(self.factor * math.log(length))
        mean_value = torch.mean(torch.mean(corr, dim=1), dim=1)
        index = torch.topk(torch.mean(mean_value, dim=0), top_k, dim=-1)[1]
        weights = torch.stack([mean_value[:, index[i]] for i in range(top_k)], dim=-1)
        # update corr
        tmp_corr = torch.softmax(weights, dim=-1)
        # aggregation
        tmp_values = values
        delays_agg = torch.zeros_like(values).float()
        for i in range(top_k):
            pattern = torch.roll(tmp_values, -int(index[i]), -1)
            delays_agg = delays_agg + pattern * \
                         (tmp_corr[:, i].unsqueeze(1).unsqueeze(1).unsqueeze(1).repeat(1, head, channel, length))
        return delays_agg

    def time_delay_agg_inference(self, values, corr):
        """
        SpeedUp version of Autocorrelation (a batch-normalization style design)
        This is for the inference phase.
        """
        batch = values.shape[0]
        head = values.shape[1]
        channel = values.shape[2]
        length = values.shape[3]
        # index init
        init_index = torch.arange(length).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(batch, head, channel, 1).cuda()
        # find top k
        top_k = int(self.factor * math.log(length))
        mean_value = torch.mean(torch.mean(corr, dim=1), dim=1)
        weights, delay = torch.topk(mean_value, top_k, dim=-1)
        # update corr
        tmp_corr = torch.softmax(weights, dim=-1)
        # aggregation
        tmp_values = values.repeat(1, 1, 1, 2)
        delays_agg = torch.zeros_like(values).float()
        for i in range(top_k):
            tmp_delay = init_index + delay[:, i].unsqueeze(1).unsqueeze(1).unsqueeze(1).repeat(1, head, channel, length)
            pattern = torch.gather(tmp_values, dim=-1, index=tmp_delay)
            delays_agg = delays_agg + pattern * \
                         (tmp_corr[:, i].unsqueeze(1).unsqueeze(1).unsqueeze(1).repeat(1, head, channel, length))
        return delays_agg

    def time_delay_agg_full(self, values, corr):
        """
        Standard version of Autocorrelation
        """
        batch = values.shape[0]
        head = values.shape[1]
        channel = values.shape[2]
        length = values.shape[3]
        # index init
        init_index = torch.arange(length).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(batch, head, channel, 1).cuda()
        # find top k
        top_k = int(self.factor * math.log(length))
        weights, delay = torch.topk(corr, top_k, dim=-1)
        # update corr
        tmp_corr = torch.softmax(weights, dim=-1)
        # aggregation
        tmp_values = values.repeat(1, 1, 1, 2)
        delays_agg = torch.zeros_like(values).float()
        for i in range(top_k):
            tmp_delay = init_index + delay[..., i].unsqueeze(-1)
            pattern = torch.gather(tmp_values, dim=-1, index=tmp_delay)
            delays_agg = delays_agg + pattern * (tmp_corr[..., i].unsqueeze(-1))
        return delays_agg

    def forward(self, queries, keys, values, attn_mask):
        B, L, H, E = queries.shape
        _, S, _, D = values.shape
        if L > S:
            zeros = torch.zeros_like(queries[:, :(L - S), :]).float()
            values = torch.cat([values, zeros], dim=1)
            keys = torch.cat([keys, zeros], dim=1)
        else:
            values = values[:, :L, :, :]
            keys = keys[:, :L, :, :]

        # period-based dependencies
        q_fft = torch.fft.rfft(queries.permute(0, 2, 3, 1).contiguous(), dim=-1)
        k_fft = torch.fft.rfft(keys.permute(0, 2, 3, 1).contiguous(), dim=-1)
        res = q_fft * torch.conj(k_fft)
        corr = torch.fft.irfft(res, dim=-1)

        # time delay agg
        if self.training:
            V = self.time_delay_agg_training(values.permute(0, 2, 3, 1).contiguous(), corr).permute(0, 3, 1, 2)
        else:
            V = self.time_delay_agg_inference(values.permute(0, 2, 3, 1).contiguous(), corr).permute(0, 3, 1, 2)

        if self.output_attention:
            return (V.contiguous(), corr.permute(0, 3, 1, 2))
        else:
            return (V.contiguous(), None)


class AutoCorrelationLayer(nn.Module):
    def __init__(self, correlation, d_model, n_heads, d_keys=None,
                 d_values=None):
        super(AutoCorrelationLayer, self).__init__()

        d_keys = d_keys or (d_model // n_heads)
        d_values = d_values or (d_model // n_heads)

        self.inner_correlation = correlation
        self.query_projection = nn.Linear(d_model, d_keys * n_heads)
        self.key_projection = nn.Linear(d_model, d_keys * n_heads)
        self.value_projection = nn.Linear(d_model, d_values * n_heads)
        self.out_projection = nn.Linear(d_values * n_heads, d_model)
        self.n_heads = n_heads

    def forward(self, queries, keys, values, attn_mask):
        B, L, _ = queries.shape
        _, S, _ = keys.shape
        H = self.n_heads

        queries = self.query_projection(queries).view(B, L, H, -1)
        keys = self.key_projection(keys).view(B, S, H, -1)
        values = self.value_projection(values).view(B, S, H, -1)

        out, attn = self.inner_correlation(
            queries,
            keys,
            values,
            attn_mask
        )
        out = out.view(B, L, -1)

        return self.out_projection(out), attn

class my_Layernorm(nn.Module):
    """
    Special designed layernorm for the seasonal part
    """

    def __init__(self, channels):
        super(my_Layernorm, self).__init__()
        self.layernorm = nn.LayerNorm(channels)

    def forward(self, x):
        x_hat = self.layernorm(x)
        bias = torch.mean(x_hat, dim=1).unsqueeze(1).repeat(1, x.shape[1], 1)
        return x_hat - bias


class moving_avg(nn.Module):
    """
    Moving average block to highlight the trend of time series
    """

    def __init__(self, kernel_size, stride):
        super(moving_avg, self).__init__()
        self.kernel_size = kernel_size
        self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, padding=0)

    def forward(self, x):
        # padding on the both ends of time series
        front = x[:, 0:1, :].repeat(1, (self.kernel_size - 1) // 2, 1)
        end = x[:, -1:, :].repeat(1, (self.kernel_size - 1) // 2, 1)
        x = torch.cat([front, x, end], dim=1)
        x = self.avg(x.permute(0, 2, 1))
        x = x.permute(0, 2, 1)
        return x


class series_decomp(nn.Module):
    """
    Series decomposition block
    """

    def __init__(self, kernel_size):
        super(series_decomp, self).__init__()
        self.moving_avg = moving_avg(kernel_size, stride=1)

    def forward(self, x):
        moving_mean = self.moving_avg(x)
        res = x - moving_mean
        return res, moving_mean


class series_decomp_multi(nn.Module):
    """
    Multiple Series decomposition block from FEDformer
    """

    def __init__(self, kernel_size):
        super(series_decomp_multi, self).__init__()
        self.kernel_size = kernel_size
        self.series_decomp = [series_decomp(kernel) for kernel in kernel_size]

    def forward(self, x):
        moving_mean = []
        res = []
        for func in self.series_decomp:
            sea, moving_avg = func(x)
            moving_mean.append(moving_avg)
            res.append(sea)

        sea = sum(res) / len(res)
        moving_mean = sum(moving_mean) / len(moving_mean)
        return sea, moving_mean


class EncoderLayer(nn.Module):
    """
    Autoformer encoder layer with the progressive decomposition architecture
    """

    def __init__(self, attention, d_model, d_ff=None, moving_avg=25, dropout=0.1, activation="relu"):
        super(EncoderLayer, self).__init__()
        d_ff = d_ff or 4 * d_model
        self.attention = attention
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1, bias=False)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1, bias=False)
        self.decomp1 = series_decomp(moving_avg)
        self.decomp2 = series_decomp(moving_avg)
        self.dropout = nn.Dropout(dropout)
        self.activation = F.relu if activation == "relu" else F.gelu

    def forward(self, x, attn_mask=None):
        new_x, attn = self.attention(
            x, x, x,
            attn_mask=attn_mask
        )
        x = x + self.dropout(new_x)
        x, _ = self.decomp1(x)
        y = x
        y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
        y = self.dropout(self.conv2(y).transpose(-1, 1))
        res, _ = self.decomp2(x + y)
        return res, attn


class Encoder(nn.Module):
    """
    Autoformer encoder
    """

    def __init__(self, attn_layers, conv_layers=None, norm_layer=None):
        super(Encoder, self).__init__()
        self.attn_layers = nn.ModuleList(attn_layers)
        self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None
        self.norm = norm_layer

    def forward(self, x, attn_mask=None):
        attns = []
        if self.conv_layers is not None:
            for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers):
                x, attn = attn_layer(x, attn_mask=attn_mask)
                x = conv_layer(x)
                attns.append(attn)
            x, attn = self.attn_layers[-1](x)
            attns.append(attn)
        else:
            for attn_layer in self.attn_layers:
                x, attn = attn_layer(x, attn_mask=attn_mask)
                attns.append(attn)

        if self.norm is not None:
            x = self.norm(x)

        return x, attns


class DecoderLayer(nn.Module):
    """
    Autoformer decoder layer with the progressive decomposition architecture
    """

    def __init__(self, self_attention, cross_attention, d_model, c_out, d_ff=None,
                 moving_avg=25, dropout=0.1, activation="relu"):
        super(DecoderLayer, self).__init__()
        d_ff = d_ff or 4 * d_model
        self.self_attention = self_attention
        self.cross_attention = cross_attention
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1, bias=False)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1, bias=False)
        self.decomp1 = series_decomp(moving_avg)
        self.decomp2 = series_decomp(moving_avg)
        self.decomp3 = series_decomp(moving_avg)
        self.dropout = nn.Dropout(dropout)
        self.projection = nn.Conv1d(in_channels=d_model, out_channels=c_out, kernel_size=3, stride=1, padding=1,
                                    padding_mode='circular', bias=False)
        self.activation = F.relu if activation == "relu" else F.gelu

    def forward(self, x, cross, x_mask=None, cross_mask=None):
        x = x + self.dropout(self.self_attention(
            x, x, x,
            attn_mask=x_mask
        )[0])
        x, trend1 = self.decomp1(x)
        x = x + self.dropout(self.cross_attention(
            x, cross, cross,
            attn_mask=cross_mask
        )[0])
        x, trend2 = self.decomp2(x)
        y = x
        y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
        y = self.dropout(self.conv2(y).transpose(-1, 1))
        x, trend3 = self.decomp3(x + y)

        residual_trend = trend1 + trend2 + trend3
        residual_trend = self.projection(residual_trend.permute(0, 2, 1)).transpose(1, 2)
        return x, residual_trend


class Decoder(nn.Module):
    """
    Autoformer encoder
    """

    def __init__(self, layers, norm_layer=None, projection=None):
        super(Decoder, self).__init__()
        self.layers = nn.ModuleList(layers)
        self.norm = norm_layer
        self.projection = projection

    def forward(self, x, cross, x_mask=None, cross_mask=None, trend=None):
        for layer in self.layers:
            x, residual_trend = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask)
            trend = trend + residual_trend

        if self.norm is not None:
            x = self.norm(x)

        if self.projection is not None:
            x = self.projection(x)
        return x, trend

class FixedEmbedding(nn.Module):
    def __init__(self, c_in, d_model):
        super(FixedEmbedding, self).__init__()

        w = torch.zeros(c_in, d_model).float()
        w.require_grad = False

        position = torch.arange(0, c_in).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float()
                    * -(math.log(10000.0) / d_model)).exp()

        w[:, 0::2] = torch.sin(position * div_term)
        w[:, 1::2] = torch.cos(position * div_term)

        self.emb = nn.Embedding(c_in, d_model)
        self.emb.weight = nn.Parameter(w, requires_grad=False)

    def forward(self, x):
        return self.emb(x).detach()

class TemporalEmbedding(nn.Module):
    def __init__(self, d_model, embed_type='fixed', freq='h'):
        super(TemporalEmbedding, self).__init__()

        hour_size = 96
        weekday_size = 7

        Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding
        self.hour_embed = Embed(hour_size, d_model)
        self.weekday_embed = Embed(weekday_size, d_model)
        
    def forward(self, x):
        x = x.long()
        hour_x = self.hour_embed(x[:, :, 0])
        weekday_x = self.weekday_embed(x[:, :, 1])

        return hour_x + weekday_x

class PositionalEmbedding(nn.Module):
    def __init__(self, d_model, max_len=5000):
        super(PositionalEmbedding, self).__init__()
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model).float()
        pe.require_grad = False

        position = torch.arange(0, max_len).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float()
                    * -(math.log(10000.0) / d_model)).exp()

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, x):
        return self.pe[:, :x.size(1)]

class TokenEmbedding(nn.Module):
    def __init__(self, c_in, d_model):
        super(TokenEmbedding, self).__init__()
        padding = 1 if torch.__version__ >= '1.5.0' else 2
        self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
                                   kernel_size=3, padding=padding, padding_mode='circular', bias=False)
        for m in self.modules():
            if isinstance(m, nn.Conv1d):
                nn.init.kaiming_normal_(
                    m.weight, mode='fan_in', nonlinearity='leaky_relu')

    def forward(self, x):
        x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
        return x

class DataEmbedding_wo_pos(nn.Module):
    def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
        super(DataEmbedding_wo_pos, self).__init__()

        self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
        self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
                                                    freq=freq)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, x_mark):
        if x_mark is None:
            x = self.value_embedding(x)
        else:
            x = self.value_embedding(x) + self.temporal_embedding(x_mark)
        return self.dropout(x)

class Autoformer(nn.Module):
    """
    Autoformer is the first method to achieve the series-wise connection,
    with inherent O(LlogL) complexity
    Paper link: https://openreview.net/pdf?id=I55UqU-M11y
    """

    def __init__(
            self,
            enc_in,
            dec_in,
            c_out,
            pred_len,
            seq_len,
            d_model = 64,
            data_idx = [0,3,4,5,6,7],
            time_idx = [1,2],
            output_attention = False,
            moving_avg_val = 25,
            factor = 3,
            n_heads = 4,
            d_ff = 512,
            d_layers = 3,
            e_layers = 3,
            activation = 'gelu',
            dropout = 0.1
    ):
        super(Autoformer, self).__init__()
        self.seq_len = seq_len
        self.pred_len = pred_len
        self.output_attention = output_attention
        self.data_idx = data_idx
        self.time_idx = time_idx
        dec_in = enc_in # encoder and decoder shapes should be the same
        self.dec_in = dec_in
        self.label_len = self.seq_len//2

        # Decomp
        kernel_size = moving_avg_val
        self.decomp = series_decomp(kernel_size)

        # Embedding
        self.enc_embedding = DataEmbedding_wo_pos(enc_in, d_model, 'fixed','h',
                                                  dropout)
        # Encoder
        self.encoder = Encoder(
            [
                EncoderLayer(
                    AutoCorrelationLayer(
                        AutoCorrelation(False, factor, attention_dropout=dropout,
                                        output_attention=output_attention),
                        d_model, n_heads),
                    d_model,
                    d_ff,
                    moving_avg=moving_avg_val,
                    dropout=dropout,
                    activation=activation
                ) for l in range(e_layers)
            ],
            norm_layer=my_Layernorm(d_model)
        )
        # Decoder
        self.dec_embedding = DataEmbedding_wo_pos(dec_in, d_model, 'fixed','h',
                                                    dropout)
        self.decoder = Decoder(
            [
                DecoderLayer(
                    AutoCorrelationLayer(
                        AutoCorrelation(True, factor, attention_dropout=dropout,
                                        output_attention=False),
                        d_model, n_heads),
                    AutoCorrelationLayer(
                        AutoCorrelation(False, factor, attention_dropout=dropout,
                                        output_attention=False),
                        d_model, n_heads),
                    d_model,
                    c_out,
                    d_ff,
                    moving_avg=moving_avg_val,
                    dropout=dropout,
                    activation=activation,
                )
                for l in range(d_layers)
            ],
            norm_layer=my_Layernorm(d_model),
            projection=nn.Linear(d_model, c_out, bias=True)
            )

    def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
        # decomp init
        mean = torch.mean(x_enc, dim=1).unsqueeze(1).repeat(1, self.pred_len, 1)
        zeros = torch.zeros([x_mark_dec.shape[0], self.pred_len,self.dec_in], device=x_enc.device)
        seasonal_init, trend_init = self.decomp(x_enc)
        # decoder input
        trend_init = torch.cat([trend_init[:, -self.label_len:, :], mean], dim=1)
        seasonal_init = torch.cat([seasonal_init[:, -self.label_len:, :], zeros], dim=1)
        # enc
        enc_out = self.enc_embedding(x_enc, x_mark_enc)
        enc_out, attns = self.encoder(enc_out, attn_mask=None)
        # dec
        x_mark_dec = torch.cat([x_mark_enc,x_mark_dec],dim=1)[:,-(self.label_len+self.pred_len):,:]
        dec_out = self.dec_embedding(seasonal_init, x_mark_dec)
        seasonal_part, trend_part = self.decoder(dec_out, enc_out, x_mask=None, cross_mask=None,
                                                 trend=trend_init)
        dec_out = trend_part + seasonal_part

        
        return dec_out[:, -self.pred_len:, :]

    def forward(self, x, fut_time):

        x_enc = x[:,:,self.data_idx]
        x_mark_enc = x[:,:,self.time_idx]
        #  x_dec = torch.zeros((fut_time.shape[0],fut_time.shape[1],self.dec_in),dtype=fut_time.dtype,device=fut_time.device)
        x_mark_dec = fut_time
            
        # not necessary to generate decoder input
        # return self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)[:,-1,[0]]  # [B, 1]
        return self.forecast(x_enc, x_mark_enc, None, x_mark_dec)[:,-1,[0]]  # [B, 1]