File size: 4,771 Bytes
6dd3ebe
 
 
 
 
4cc7625
 
6dd3ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

# Modified from https://github.com/gokulkarthik/LSTNet.pytorch/blob/master/LSTNet.py
# Modified by Shourya Bose, shbose@ucsc.edu

class LSTNet(nn.Module):
    
    def __init__(
            self,
            num_features: int = 8,
            conv1_out_channels: int = 32,
            conv1_kernel_height: int = 7,
            recc1_out_channels: int = 64,
            skip_steps: list[int] = [4,24],
            skip_reccs_out_channels: list[int] = [4,4],
            output_out_features: int = 1,
            ar_window_size: int = 7,
            dropout: float = 0.1
    ):
        super(LSTNet, self).__init__()
        self.num_features = num_features
        self.conv1_out_channels = conv1_out_channels
        self.conv1_kernel_height = conv1_kernel_height
        self.recc1_out_channels = recc1_out_channels
        self.skip_steps = skip_steps
        self.skip_reccs_out_channels = skip_reccs_out_channels
        self.output_out_features = output_out_features
        self.ar_window_size = ar_window_size
        self.dropout = nn.Dropout(p = dropout)
       
        
        self.conv1 = nn.Conv2d(1, self.conv1_out_channels, 
                               kernel_size=(self.conv1_kernel_height, self.num_features))
        self.recc1 = nn.GRU(self.conv1_out_channels, self.recc1_out_channels, batch_first=True)
        self.skip_reccs = nn.ModuleList()
        for i in range(len(self.skip_steps)):
            self.skip_reccs.append(nn.GRU(self.conv1_out_channels, self.skip_reccs_out_channels[i], batch_first=True))
        self.output_in_features = self.recc1_out_channels + np.dot(self.skip_steps, self.skip_reccs_out_channels)
        self.output = nn.Linear(self.output_in_features, self.output_out_features)
        if self.ar_window_size > 0:
            self.ar = nn.Linear(self.ar_window_size, 1)
        
    def forward(self, X, fut_time):
        """
        Parameters:
        X (tensor) [batch_size, time_steps, num_features]
        """
        batch_size = X.size(0)
        
        # Convolutional Layer
        C = X.unsqueeze(1) # [batch_size, num_channels=1, time_steps, num_features]
        C = F.relu(self.conv1(C)) # [batch_size, conv1_out_channels, shrinked_time_steps, 1]
        C = self.dropout(C)
        C = torch.squeeze(C, 3) # [batch_size, conv1_out_channels, shrinked_time_steps]
        
        # Recurrent Layer
        R = C.permute(0, 2, 1) # [batch_size, shrinked_time_steps, conv1_out_channels]
        out, hidden = self.recc1(R) # [batch_size, shrinked_time_steps, recc_out_channels]
        R = out[:, -1, :] # [batch_size, recc_out_channels]
        R = self.dropout(R)
        #print(R.shape)
        
        # Skip Recurrent Layers
        shrinked_time_steps = C.size(2)
        for i in range(len(self.skip_steps)):
            skip_step = self.skip_steps[i]
            skip_sequence_len = shrinked_time_steps // skip_step
            # shrinked_time_steps shrinked further
            S = C[:, :, -skip_sequence_len*skip_step:] # [batch_size, conv1_out_channels, shrinked_time_steps]
            S = S.view(S.size(0), S.size(1), skip_sequence_len, skip_step) # [batch_size, conv1_out_channels, skip_sequence_len, skip_step=num_skip_components]
            # note that num_skip_components = skip_step
            S = S.permute(0, 3, 2, 1).contiguous() # [batch_size, skip_step=num_skip_components, skip_sequence_len, conv1_out_channels]
            S = S.view(S.size(0)*S.size(1), S.size(2), S.size(3))  # [batch_size*num_skip_components, skip_sequence_len, conv1_out_channels]
            out, hidden = self.skip_reccs[i](S) # [batch_size*num_skip_components, skip_sequence_len, skip_reccs_out_channels[i]]
            S = out[:, -1, :] # [batch_size*num_skip_components, skip_reccs_out_channels[i]]
            S = S.view(batch_size, skip_step*S.size(1)) # [batch_size, num_skip_components*skip_reccs_out_channels[i]]
            S = self.dropout(S)
            R = torch.cat((R, S), 1) # [batch_size, recc_out_channels + skip_reccs_out_channels * num_skip_components]
            #print(S.shape)
        #print(R.shape)
        
        # Output Layer
        O = F.relu(self.output(R)) # [batch_size, output_out_features=1]
        
        if self.ar_window_size > 0:
            # set dim3 based on output_out_features
            AR = X[:, -self.ar_window_size:, 3:4] # [batch_size, ar_window_size, output_out_features=1]
            AR = AR.permute(0, 2, 1).contiguous() # [batch_size, output_out_features, ar_window_size]
            AR = self.ar(AR) # [batch_size, output_out_features, 1]
            AR = AR.squeeze(2) # [batch_size, output_out_features]
            O = O + AR
        
        return O