File size: 13,383 Bytes
4cc7625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import torch
from torch import nn
import torch.nn.functional as F
import math
from math import sqrt
import numpy as np

# Modified from: https://github.com/thuml/Time-Series-Library
# Modified by Shourya Bose, shbose@ucsc.edu

class PositionalEmbedding(nn.Module):
    def __init__(self, d_model, max_len=5000):
        super(PositionalEmbedding, self).__init__()
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model).float()
        pe.require_grad = False

        position = torch.arange(0, max_len).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float()
                    * -(math.log(10000.0) / d_model)).exp()

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, x):
        return self.pe[:, :x.size(1)]

class PatchEmbedding(nn.Module):
    def __init__(self, d_model, patch_len, stride, padding, dropout):
        super(PatchEmbedding, self).__init__()
        # Patching
        self.patch_len = patch_len
        self.stride = stride
        self.padding_patch_layer = nn.ReplicationPad1d((0, padding))

        # Backbone, Input encoding: projection of feature vectors onto a d-dim vector space
        self.value_embedding = nn.Linear(patch_len, d_model, bias=False)

        # Positional embedding
        self.position_embedding = PositionalEmbedding(d_model)

        # Residual dropout
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        # do patching
        n_vars = x.shape[1]
        x = self.padding_patch_layer(x)
        x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
        x = torch.reshape(x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3]))
        # Input encoding
        x = self.value_embedding(x) + self.position_embedding(x)
        return self.dropout(x), n_vars

class AttentionLayer(nn.Module):
    def __init__(self, attention, d_model, n_heads, d_keys=None,
                 d_values=None):
        super(AttentionLayer, self).__init__()

        d_keys = d_keys or (d_model // n_heads)
        d_values = d_values or (d_model // n_heads)

        self.inner_attention = attention
        self.query_projection = nn.Linear(d_model, d_keys * n_heads)
        self.key_projection = nn.Linear(d_model, d_keys * n_heads)
        self.value_projection = nn.Linear(d_model, d_values * n_heads)
        self.out_projection = nn.Linear(d_values * n_heads, d_model)
        self.n_heads = n_heads

    def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
        B, L, _ = queries.shape
        _, S, _ = keys.shape
        H = self.n_heads

        queries = self.query_projection(queries).view(B, L, H, -1)
        keys = self.key_projection(keys).view(B, S, H, -1)
        values = self.value_projection(values).view(B, S, H, -1)

        out, attn = self.inner_attention(
            queries,
            keys,
            values,
            attn_mask,
            tau=tau,
            delta=delta
        )
        out = out.view(B, L, -1)

        return self.out_projection(out), attn

class FullAttention(nn.Module):
    def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
        super(FullAttention, self).__init__()
        self.scale = scale
        self.mask_flag = mask_flag
        self.output_attention = output_attention
        self.dropout = nn.Dropout(attention_dropout)

    def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
        B, L, H, E = queries.shape
        _, S, _, D = values.shape
        scale = self.scale or 1. / sqrt(E)

        scores = torch.einsum("blhe,bshe->bhls", queries, keys)

        if self.mask_flag:
            if attn_mask is None:
                attn_mask = TriangularCausalMask(B, L, device=queries.device)

            scores.masked_fill_(attn_mask.mask, -np.inf)

        A = self.dropout(torch.softmax(scale * scores, dim=-1))
        V = torch.einsum("bhls,bshd->blhd", A, values)

        if self.output_attention:
            return V.contiguous(), A
        else:
            return V.contiguous(), None

class TriangularCausalMask():
    def __init__(self, B, L, device="cpu"):
        mask_shape = [B, 1, L, L]
        with torch.no_grad():
            self._mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1).to(device)

    @property
    def mask(self):
        return self._mask

class FullAttention(nn.Module):
    def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
        super(FullAttention, self).__init__()
        self.scale = scale
        self.mask_flag = mask_flag
        self.output_attention = output_attention
        self.dropout = nn.Dropout(attention_dropout)

    def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
        B, L, H, E = queries.shape
        _, S, _, D = values.shape
        scale = self.scale or 1. / sqrt(E)

        scores = torch.einsum("blhe,bshe->bhls", queries, keys)

        if self.mask_flag:
            if attn_mask is None:
                attn_mask = TriangularCausalMask(B, L, device=queries.device)

            scores.masked_fill_(attn_mask.mask, -np.inf)

        A = self.dropout(torch.softmax(scale * scores, dim=-1))
        V = torch.einsum("bhls,bshd->blhd", A, values)

        if self.output_attention:
            return V.contiguous(), A
        else:
            return V.contiguous(), None
        
class AttentionLayer(nn.Module):
    def __init__(self, attention, d_model, n_heads, d_keys=None,
                 d_values=None):
        super(AttentionLayer, self).__init__()

        d_keys = d_keys or (d_model // n_heads)
        d_values = d_values or (d_model // n_heads)

        self.inner_attention = attention
        self.query_projection = nn.Linear(d_model, d_keys * n_heads)
        self.key_projection = nn.Linear(d_model, d_keys * n_heads)
        self.value_projection = nn.Linear(d_model, d_values * n_heads)
        self.out_projection = nn.Linear(d_values * n_heads, d_model)
        self.n_heads = n_heads

    def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
        B, L, _ = queries.shape
        _, S, _ = keys.shape
        H = self.n_heads

        queries = self.query_projection(queries).view(B, L, H, -1)
        keys = self.key_projection(keys).view(B, S, H, -1)
        values = self.value_projection(values).view(B, S, H, -1)

        out, attn = self.inner_attention(
            queries,
            keys,
            values,
            attn_mask,
            tau=tau,
            delta=delta
        )
        out = out.view(B, L, -1)

        return self.out_projection(out), attn

class EncoderLayer(nn.Module):
    def __init__(self, attention, d_model, d_ff=None, dropout=0.1, activation="relu"):
        super(EncoderLayer, self).__init__()
        d_ff = d_ff or 4 * d_model
        self.attention = attention
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        self.activation = F.relu if activation == "relu" else F.gelu

    def forward(self, x, attn_mask=None, tau=None, delta=None):
        new_x, attn = self.attention(
            x, x, x,
            attn_mask=attn_mask,
            tau=tau, delta=delta
        )
        x = x + self.dropout(new_x)

        y = x = self.norm1(x)
        y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
        y = self.dropout(self.conv2(y).transpose(-1, 1))

        return self.norm2(x + y), attn


class Encoder(nn.Module):
    def __init__(self, attn_layers, conv_layers=None, norm_layer=None):
        super(Encoder, self).__init__()
        self.attn_layers = nn.ModuleList(attn_layers)
        self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None
        self.norm = norm_layer

    def forward(self, x, attn_mask=None, tau=None, delta=None):
        # x [B, L, D]
        attns = []
        if self.conv_layers is not None:
            for i, (attn_layer, conv_layer) in enumerate(zip(self.attn_layers, self.conv_layers)):
                delta = delta if i == 0 else None
                x, attn = attn_layer(x, attn_mask=attn_mask, tau=tau, delta=delta)
                x = conv_layer(x)
                attns.append(attn)
            x, attn = self.attn_layers[-1](x, tau=tau, delta=None)
            attns.append(attn)
        else:
            for attn_layer in self.attn_layers:
                x, attn = attn_layer(x, attn_mask=attn_mask, tau=tau, delta=delta)
                attns.append(attn)

        if self.norm is not None:
            x = self.norm(x)

        return x, attns

class Transpose(nn.Module):
    def __init__(self, *dims, contiguous=False): 
        super().__init__()
        self.dims, self.contiguous = dims, contiguous
    def forward(self, x):
        if self.contiguous: return x.transpose(*self.dims).contiguous()
        else: return x.transpose(*self.dims)


class FlattenHead(nn.Module):
    def __init__(self, n_vars, nf, target_window, head_dropout=0):
        super().__init__()
        self.n_vars = n_vars
        self.flatten = nn.Flatten(start_dim=-2)
        self.linear = nn.Linear(nf, target_window)
        self.dropout = nn.Dropout(head_dropout)

    def forward(self, x):  # x: [bs x nvars x d_model x patch_num]
        x = self.flatten(x)
        x = self.linear(x)
        x = self.dropout(x)
        return x


class PatchTST(nn.Module):
    """
    Paper link: https://arxiv.org/pdf/2211.14730.pdf
    """

    def __init__(
        self,
        enc_in,
        dec_in, # unused
        c_out, # unused
        pred_len,
        seq_len,
        d_model = 64,
        patch_len = 16,
        stride = 8,
        data_idx = [0,3,4,5,6,7],
        time_idx = [1,2],
        output_attention = False,
        factor = 3,
        n_heads = 4,
        d_ff = 512,
        e_layers = 3,
        activation = 'gelu',
        dropout = 0.1
    ):
    
    #(self, configs, patch_len=16, stride=8):
        """
        patch_len: int, patch len for patch_embedding
        stride: int, stride for patch_embedding
        """
        super().__init__()
        self.seq_len = seq_len
        self.pred_len = pred_len
        self.data_idx = data_idx
        self.time_idx = time_idx
        self.dec_in = dec_in
        padding = stride

        # patching and embedding
        self.patch_embedding = PatchEmbedding(
            d_model, patch_len, stride, padding, dropout)

        # Encoder
        self.encoder = Encoder(
            [
                EncoderLayer(
                    AttentionLayer(
                        FullAttention(False, factor, attention_dropout=dropout,
                                      output_attention=output_attention), d_model, n_heads),
                    d_model,
                    d_ff,
                    dropout=dropout,
                    activation=activation
                ) for l in range(e_layers)
            ],
            norm_layer=nn.Sequential(Transpose(1,2), nn.BatchNorm1d(d_model), Transpose(1,2))
        )

        # Prediction Head
        self.head_nf = d_model * \
                       int((seq_len - patch_len) / stride + 2)
        self.head = FlattenHead(enc_in, self.head_nf,pred_len,
                                head_dropout=dropout)

    def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
        # Normalization from Non-stationary Transformer
        means = x_enc.mean(1, keepdim=True).detach()
        x_enc = x_enc - means
        stdev = torch.sqrt(
            torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
        x_enc /= stdev

        # do patching and embedding
        x_enc = x_enc.permute(0, 2, 1)
        # u: [bs * nvars x patch_num x d_model]
        enc_out, n_vars = self.patch_embedding(x_enc)

        # Encoder
        # z: [bs * nvars x patch_num x d_model]
        enc_out, attns = self.encoder(enc_out)
        # z: [bs x nvars x patch_num x d_model]
        enc_out = torch.reshape(
            enc_out, (-1, n_vars, enc_out.shape[-2], enc_out.shape[-1]))
        # z: [bs x nvars x d_model x patch_num]
        enc_out = enc_out.permute(0, 1, 3, 2)

        # Decoder
        dec_out = self.head(enc_out)  # z: [bs x nvars x target_window]
        dec_out = dec_out.permute(0, 2, 1)

        # De-Normalization from Non-stationary Transformer
        dec_out = dec_out * \
                  (stdev[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
        dec_out = dec_out + \
                  (means[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
        return dec_out
    
    def forward(self, x, fut_time):
        
        x_enc = x[:,:,self.data_idx]
        x_mark_enc = x[:,:,self.time_idx]
        x_dec = torch.zeros((fut_time.shape[0],fut_time.shape[1],self.dec_in),dtype=fut_time.dtype,device=fut_time.device)
        x_mark_dec = fut_time
        
        return self.forecast(x_enc,x_mark_enc,x_dec,x_mark_dec)[:,-1,[0]]