File size: 27,906 Bytes
a9073bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 |
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pytorch version of patched decoder."""
import dataclasses
import math
from typing import List, Tuple
import torch
from torch import nn
import torch.nn.functional as F
def _create_quantiles() -> list[float]:
return [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
@dataclasses.dataclass
class TimesFMConfig:
"""Config for initializing timesfm patched_decoder class."""
# The number of blocks in the model.
num_layers: int = 20
# The number of attention heads used in the attention layers of the model.
num_heads: int = 16
# The number of key-value heads for implementing attention.
num_kv_heads: int = 16
# The hidden size of the model.
hidden_size: int = 1280
# The dimension of the MLP representations.
intermediate_size: int = 1280
# The number of head dimensions.
head_dim: int = 80
# The epsilon used by the rms normalization layers.
rms_norm_eps: float = 1e-6
# Patch length
patch_len: int = 32
# Horizon length
horizon_len: int = 128
# quantiles
quantiles: List[float] = dataclasses.field(default_factory=_create_quantiles)
# Padding value
pad_val: float = 1123581321.0
# Tolerance
tolerance: float = 1e-6
# The dtype of the weights.
dtype: str = "bfloat32"
# use positional embedding
use_positional_embedding: bool = True
def _masked_mean_std(
inputs: torch.Tensor,
padding: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""Calculates mean and standard deviation of `inputs` across axis 1.
It excludes values where `padding` is 1.
Args:
inputs: A PyTorch tensor of shape [b, n, p].
padding: A PyTorch tensor of shape [b, n, p] with values 0 or 1.
Returns:
A tuple containing the mean and standard deviation.
We return the statistics of the first patch with more than three non-padded
values.
"""
# Selecting the first patch with more than 3 unpadded values.
pad_sum = torch.sum(1 - padding, dim=2)
def _get_patch_index(arr: torch.Tensor):
indices = torch.argmax((arr >= 3).to(torch.int32), dim=1)
row_sum = (arr >= 3).to(torch.int32).sum(dim=1)
return torch.where(row_sum == 0, arr.shape[1] - 1, indices)
patch_indices = _get_patch_index(pad_sum)
bidxs = torch.arange(inputs.shape[0])
arr = inputs[bidxs, patch_indices, :]
pad = padding[bidxs, patch_indices, :]
# Create a mask where padding is 0
mask = 1 - pad
# Calculate the number of valid elements
num_valid_elements = torch.sum(mask, dim=1)
num_valid_elements = torch.where(
num_valid_elements == 0,
torch.tensor(1,
dtype=num_valid_elements.dtype,
device=num_valid_elements.device),
num_valid_elements,
)
# Calculate the masked sum and squared sum
masked_sum = torch.sum(arr * mask, dim=1)
masked_squared_sum = torch.sum((arr * mask)**2, dim=1)
# Calculate the masked mean and standard deviation
masked_mean = masked_sum / num_valid_elements
masked_var = masked_squared_sum / num_valid_elements - masked_mean**2
masked_var = torch.where(
masked_var < 0.0,
torch.tensor(0.0, dtype=masked_var.dtype, device=masked_var.device),
masked_var,
)
masked_std = torch.sqrt(masked_var)
return masked_mean, masked_std
def _shift_padded_seq(mask: torch.Tensor, seq: torch.Tensor) -> torch.Tensor:
"""Shifts rows of seq based on the first 0 in each row of the mask.
Args:
mask: mask tensor of shape [B, N]
seq: seq tensor of shape [B, N, P]
Returns:
Returns the shifted sequence.
"""
batch_size, num_seq, feature_dim = seq.shape
new_mask: torch.BoolTensor = mask == 0
# Use argmax to find the first True value in each row
indices = new_mask.to(torch.int32).argmax(dim=1)
# Handle rows with all zeros
indices[~new_mask.any(dim=1)] = -1
# Create index ranges for each sequence in the batch
idx_range = (torch.arange(num_seq).to(
seq.device).unsqueeze(0).unsqueeze(-1).expand(batch_size, -1,
feature_dim))
# Calculate shifted indices for each element in each sequence
shifted_idx = (idx_range - indices[:, None, None]) % num_seq
# Gather values from seq using shifted indices
shifted_seq = seq.gather(1, shifted_idx)
return shifted_seq
def get_large_negative_number(dtype: torch.dtype) -> torch.Tensor:
"""Returns a large negative value for the given dtype."""
if dtype.is_floating_point:
dtype_max = torch.finfo(dtype).max
else:
dtype_max = torch.iinfo(dtype).max
return torch.tensor(-0.7 * dtype_max, dtype=dtype)
def apply_mask_to_logits(logits: torch.Tensor,
mask: torch.Tensor) -> torch.Tensor:
"""Applies a floating-point mask to a set of logits.
Args:
logits: A torch.Tensor of logit values.
mask: A torch.Tensor (float32) of mask values with the encoding described
in the function documentation.
Returns:
Masked logits.
"""
min_value = get_large_negative_number(logits.dtype)
return torch.where((mask >= min_value * 0.5), logits, min_value)
def convert_paddings_to_mask(
paddings: torch.Tensor, dtype: torch.dtype = torch.float32) -> torch.Tensor:
"""Converts binary paddings to a logit mask ready to add to attention matrix.
Args:
paddings: binary torch.Tensor of shape [B, T], with 1 denoting padding
token.
dtype: data type of the input.
Returns:
A torch.Tensor of shape [B, 1, 1, T] ready to add to attention logits.
"""
attention_mask = paddings.detach().clone()
attention_mask = attention_mask[:, None, None, :] # Equivalent to jnp.newaxis
attention_mask *= get_large_negative_number(dtype)
return attention_mask
def causal_mask(input_t: torch.Tensor) -> torch.Tensor:
"""Computes and returns causal mask.
Args:
input_t: A torch.Tensor of shape [B, T, D].
Returns:
An attention_mask torch.Tensor of shape [1, 1, T, T]. Attention mask has
already been converted to large negative values.
"""
assert input_t.dtype.is_floating_point, input_t.dtype
large_negative_number = get_large_negative_number(input_t.dtype)
t = input_t.shape[1]
col_idx = torch.arange(t).unsqueeze(0).repeat(t, 1)
row_idx = torch.arange(t).unsqueeze(1).repeat(1, t)
mask = (row_idx < col_idx).to(input_t.dtype) * large_negative_number
return (mask.unsqueeze(0).unsqueeze(0).to(input_t.device)
) # Equivalent to jnp.newaxis
def merge_masks(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
"""Merges 2 masks.
logscale mask is expected but 0/1 mask is also fine.
Args:
a: torch.Tensor of shape [1|B, 1, 1|T, S].
b: torch.Tensor of shape [1|B, 1, 1|T, S].
Returns:
torch.Tensor of shape [1|B, 1, 1|T, S].
"""
def expand_t(key_mask):
query_mask = key_mask.transpose(-1, -2) # Equivalent of jnp.transpose
return torch.minimum(query_mask, key_mask)
if a.shape[2] != b.shape[2]:
if a.shape[2] == 1:
a = expand_t(a)
else:
assert b.shape[2] == 1
b = expand_t(b)
assert a.shape[1:] == b.shape[1:], f"a.shape={a.shape}, b.shape={b.shape}."
return torch.minimum(a, b) # Element-wise minimum, similar to jnp.minimum
class ResidualBlock(nn.Module):
"""TimesFM residual block."""
def __init__(
self,
input_dims,
hidden_dims,
output_dims,
):
super(ResidualBlock, self).__init__()
self.input_dims = input_dims
self.hidden_dims = hidden_dims
self.output_dims = output_dims
# Hidden Layer
self.hidden_layer = nn.Sequential(
nn.Linear(input_dims, hidden_dims),
nn.SiLU(),
)
# Output Layer
self.output_layer = nn.Linear(hidden_dims, output_dims)
# Residual Layer
self.residual_layer = nn.Linear(input_dims, output_dims)
def forward(self, x):
hidden = self.hidden_layer(x)
output = self.output_layer(hidden)
residual = self.residual_layer(x)
return output + residual
class RMSNorm(torch.nn.Module):
"""Pax rms norm in pytorch."""
def __init__(
self,
dim: int,
eps: float = 1e-6,
add_unit_offset: bool = False,
):
super().__init__()
self.eps = eps
self.add_unit_offset = add_unit_offset
self.weight = nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float())
if self.add_unit_offset:
output = output * (1 + self.weight.float())
else:
output = output * self.weight.float()
return output.type_as(x)
class TransformerMLP(nn.Module):
"""Pax transformer MLP in pytorch."""
def __init__(
self,
hidden_size: int,
intermediate_size: int,
):
super().__init__()
self.gate_proj = nn.Linear(hidden_size, intermediate_size)
self.down_proj = nn.Linear(intermediate_size, hidden_size)
self.layer_norm = nn.LayerNorm(normalized_shape=hidden_size, eps=1e-6)
def forward(self, x, paddings=None):
gate_inp = self.layer_norm(x)
gate = self.gate_proj(gate_inp)
gate = F.relu(gate)
outputs = self.down_proj(gate)
if paddings is not None:
outputs = outputs * (1.0 - paddings[:, :, None])
return outputs + x
class TimesFMAttention(nn.Module):
"""Implements the attention used in TimesFM."""
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
):
super().__init__()
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads
assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
self.hidden_size = hidden_size
self.head_dim = head_dim
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = nn.Parameter(
torch.empty((self.head_dim,), dtype=torch.float32),)
self.qkv_proj = nn.Linear(
self.hidden_size,
(self.num_heads + 2 * self.num_kv_heads) * self.head_dim,
)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size)
def _per_dim_scaling(self, query: torch.Tensor) -> torch.Tensor:
# [batch_size, n_local_heads, input_len, head_dim]
r_softplus_0 = 1.442695041
softplus_func = torch.nn.Softplus()
scale = r_softplus_0 / math.sqrt(self.head_dim)
scale = scale * softplus_func(self.scaling)
return query * scale[None, None, None, :]
def forward(
self,
hidden_states: torch.Tensor,
mask: torch.Tensor,
kv_write_indices: torch.Tensor | None = None,
kv_cache: Tuple[torch.Tensor, torch.Tensor] | None = None,
) -> torch.Tensor:
hidden_states_shape = hidden_states.shape
assert len(hidden_states_shape) == 3
batch_size, input_len, _ = hidden_states_shape
qkv = self.qkv_proj(hidden_states)
xq, xk, xv = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
xq = xq.view(batch_size, -1, self.num_heads, self.head_dim)
xk = xk.view(batch_size, -1, self.num_kv_heads, self.head_dim)
xv = xv.view(batch_size, -1, self.num_kv_heads, self.head_dim)
xq = self._per_dim_scaling(xq)
# Write new kv cache.
# [batch_size, input_len, n_local_kv_heads, head_dim]
if kv_cache is not None and kv_write_indices is not None:
k_cache, v_cache = kv_cache
k_cache.index_copy_(1, kv_write_indices, xk)
v_cache.index_copy_(1, kv_write_indices, xv)
key = k_cache
value = v_cache
else:
key = xk
value = xv
if self.num_kv_heads != self.num_heads:
# [batch_size, max_seq_len, n_local_heads, head_dim]
key = torch.repeat_interleave(key, self.num_queries_per_kv, dim=2)
value = torch.repeat_interleave(value, self.num_queries_per_kv, dim=2)
# [batch_size, n_local_heads, input_len, head_dim]
q = xq.transpose(1, 2)
# [batch_size, n_local_heads, max_seq_len, head_dim]
k = key.transpose(1, 2)
v = value.transpose(1, 2)
# [batch_size, n_local_heads, input_len, max_seq_len]
scores = torch.matmul(q, k.transpose(2, 3))
scores = scores + mask
scores = F.softmax(scores.float(), dim=-1).type_as(q)
# [batch_size, n_local_heads, input_len, head_dim]
output = torch.matmul(scores, v)
# return scores, output.transpose(1, 2).contiguous()
# [batch_size, input_len, hidden_dim]
output = output.transpose(1, 2).contiguous().view(batch_size, input_len, -1)
output = self.o_proj(output)
return scores, output
class TimesFMDecoderLayer(nn.Module):
"""Transformer layer."""
def __init__(
self,
hidden_size: int,
intermediate_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
rms_norm_eps: float = 1e-6,
):
super().__init__()
self.self_attn = TimesFMAttention(
hidden_size=hidden_size,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
head_dim=head_dim,
)
self.mlp = TransformerMLP(
hidden_size=hidden_size,
intermediate_size=intermediate_size,
)
self.input_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
mask: torch.Tensor,
paddings: torch.Tensor,
kv_write_indices: torch.Tensor | None = None,
kv_cache: Tuple[torch.Tensor, torch.Tensor] | None = None,
) -> torch.Tensor:
# Self Attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
scores, hidden_states = self.self_attn(
hidden_states=hidden_states,
mask=mask,
kv_write_indices=kv_write_indices,
kv_cache=kv_cache,
)
hidden_states = residual + hidden_states
# MLP
hidden_states = self.mlp(hidden_states, paddings=paddings)
return scores, hidden_states
class StackedDecoder(nn.Module):
"""Stacked transformer layer."""
def __init__(
self,
hidden_size: int,
intermediate_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
num_layers: int,
rms_norm_eps: float = 1e-6,
):
super().__init__()
self.layers = nn.ModuleList()
for _ in range(num_layers):
self.layers.append(
TimesFMDecoderLayer(
hidden_size=hidden_size,
intermediate_size=intermediate_size,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
head_dim=head_dim,
rms_norm_eps=rms_norm_eps,
))
def forward(
self,
hidden_states: torch.Tensor,
paddings: torch.Tensor,
kv_write_indices: torch.Tensor | None = None,
kv_caches: List[Tuple[torch.Tensor, torch.Tensor]] | None = None,
) -> torch.Tensor:
padding_mask = convert_paddings_to_mask(paddings, hidden_states.dtype)
atten_mask = causal_mask(hidden_states)
mask = merge_masks(padding_mask, atten_mask)
for i in range(len(self.layers)):
layer = self.layers[i]
kv_cache = kv_caches[i] if kv_caches is not None else None
_, hidden_states = layer(
hidden_states=hidden_states,
mask=mask,
paddings=paddings,
kv_write_indices=kv_write_indices,
kv_cache=kv_cache,
)
return hidden_states
class PositionalEmbedding(torch.nn.Module):
"""Generates position embedding for a given 1-d sequence.
Attributes:
min_timescale: Start of the geometric index. Determines the periodicity of
the added signal.
max_timescale: End of the geometric index. Determines the frequency of the
added signal.
embedding_dims: Dimension of the embedding to be generated.
"""
def __init__(
self,
embedding_dims: int,
min_timescale: int = 1,
max_timescale: int = 10_000,
) -> None:
super().__init__()
self.min_timescale = min_timescale
self.max_timescale = max_timescale
self.embedding_dims = embedding_dims
def forward(self, seq_length=None, position=None):
"""Generates a Tensor of sinusoids with different frequencies.
Args:
seq_length: an optional Python int defining the output sequence length.
if the `position` argument is specified.
position: [B, seq_length], optional position for each token in the
sequence, only required when the sequence is packed.
Returns:
[B, seqlen, D] if `position` is specified, else [1, seqlen, D]
"""
if position is None:
assert seq_length is not None
# [1, seqlen]
position = torch.arange(seq_length, dtype=torch.float32).unsqueeze(0)
else:
assert position.ndim == 2, position.shape
num_timescales = self.embedding_dims // 2
log_timescale_increment = math.log(
float(self.max_timescale) / float(self.min_timescale)) / max(
num_timescales - 1, 1)
inv_timescales = self.min_timescale * torch.exp(
torch.arange(num_timescales, dtype=torch.float32) *
-log_timescale_increment)
scaled_time = position.unsqueeze(2) * inv_timescales.unsqueeze(0).unsqueeze(
0)
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2)
# Padding to ensure correct embedding dimension
signal = F.pad(signal, (0, 0, 0, self.embedding_dims % 2))
return signal
class PatchedTimeSeriesDecoder(nn.Module):
"""Patched time-series decoder."""
def __init__(self, config: TimesFMConfig):
super().__init__()
self.config = config
self.input_ff_layer = ResidualBlock(
input_dims=2 * config.patch_len,
output_dims=config.hidden_size,
hidden_dims=config.intermediate_size,
)
self.freq_emb = nn.Embedding(num_embeddings=3,
embedding_dim=config.hidden_size)
self.horizon_ff_layer = ResidualBlock(
input_dims=config.hidden_size,
output_dims=config.horizon_len * (1 + len(config.quantiles)),
hidden_dims=config.intermediate_size,
)
self.stacked_transformer = StackedDecoder(
hidden_size=self.config.hidden_size,
intermediate_size=self.config.intermediate_size,
num_heads=self.config.num_heads,
num_kv_heads=self.config.num_kv_heads,
head_dim=self.config.head_dim,
num_layers=self.config.num_layers,
rms_norm_eps=self.config.rms_norm_eps,
)
if self.config.use_positional_embedding:
self.position_emb = PositionalEmbedding(self.config.hidden_size)
def _forward_transform(
self, inputs: torch.Tensor, patched_pads: torch.Tensor
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
"""Input is of shape [B, N, P]."""
mu, sigma = _masked_mean_std(inputs, patched_pads)
sigma = torch.where(
sigma < self.config.tolerance,
torch.tensor(1.0, dtype=sigma.dtype, device=sigma.device),
sigma,
)
# Normalize each patch
outputs = (inputs - mu[:, None, None]) / sigma[:, None, None]
outputs = torch.where(
torch.abs(inputs - self.config.pad_val) < self.config.tolerance,
torch.tensor(self.config.pad_val,
dtype=outputs.dtype,
device=outputs.device),
outputs,
)
return outputs, (mu, sigma)
def _reverse_transform(
self, outputs: torch.Tensor, stats: tuple[torch.Tensor,
torch.Tensor]) -> torch.Tensor:
"""Output is of shape [B, N, P, Q]."""
mu, sigma = stats
return outputs * sigma[:, None, None, None] + mu[:, None, None, None]
def _preprocess_input(
self,
input_ts: torch.Tensor,
input_padding: torch.Tensor,
) -> tuple[
torch.Tensor,
torch.Tensor,
tuple[torch.Tensor, torch.Tensor] | None,
torch.Tensor,
]:
"""Preprocess input for stacked transformer."""
# Reshape into patches (using view for efficiency)
bsize = input_ts.shape[0]
patched_inputs = input_ts.view(bsize, -1, self.config.patch_len)
patched_pads = input_padding.view(bsize, -1, self.config.patch_len)
patched_inputs = torch.where(
torch.abs(patched_pads - 1.0) < self.config.tolerance,
torch.tensor(0.0,
dtype=patched_inputs.dtype,
device=patched_inputs.device),
patched_inputs,
)
patched_pads = torch.where(
torch.abs(patched_inputs - self.config.pad_val) < self.config.tolerance,
torch.tensor(1.0, dtype=patched_pads.dtype, device=patched_pads.device),
patched_pads,
)
patched_inputs, stats = self._forward_transform(patched_inputs,
patched_pads)
# B x N x D
patched_inputs = patched_inputs * (1.0 - patched_pads)
concat_inputs = torch.cat([patched_inputs, patched_pads], dim=-1)
model_input = self.input_ff_layer(concat_inputs)
# A patch should not be padded even if there is at least one zero.
patched_padding = torch.min(patched_pads,
dim=-1)[0] # Get the values from the min result
if self.config.use_positional_embedding:
pos_emb = self.position_emb(model_input.shape[1]).to(model_input.device)
pos_emb = torch.concat([pos_emb] * model_input.shape[0], dim=0)
pos_emb = _shift_padded_seq(patched_padding, pos_emb)
model_input += pos_emb
return model_input, patched_padding, stats, patched_inputs
def _postprocess_output(
self,
model_output: torch.Tensor,
num_outputs: int,
stats: tuple[torch.Tensor, torch.Tensor],
) -> torch.Tensor:
"""Postprocess output of stacked transformer."""
# B x N x (H.Q)
output_ts = self.horizon_ff_layer(model_output)
# Reshape using view
b, n, _ = output_ts.shape
output_ts = output_ts.view(b, n, self.config.horizon_len, num_outputs)
return self._reverse_transform(output_ts, stats)
def forward(
self,
input_ts: torch.Tensor,
input_padding: torch.LongTensor,
freq: torch.Tensor,
) -> torch.Tensor:
num_outputs = len(self.config.quantiles) + 1
model_input, patched_padding, stats, _ = self._preprocess_input(
input_ts=input_ts,
input_padding=input_padding,
)
f_emb = self.freq_emb(freq) # B x 1 x D
model_input += f_emb
model_output = self.stacked_transformer(model_input, patched_padding)
output_ts = self._postprocess_output(model_output, num_outputs, stats)
return output_ts
def decode(
self,
input_ts: torch.Tensor,
paddings: torch.Tensor,
freq: torch.LongTensor,
horizon_len: int,
output_patch_len: int | None = None,
max_len: int = 512,
return_forecast_on_context: bool = False,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Auto-regressive decoding without caching.
Args:
input_ts: input time-series and paddings. Time-series shape B x C.
paddings: padding shape B x (C + H) where H is the prediction length.
freq: frequency shape B x 1
horizon_len: prediction length.
output_patch_len: output length to be fetched from one step of
auto-regressive decoding.
max_len: maximum training context length.
return_forecast_on_context: whether to return the model forecast on the
context except the first input patch.
Returns:
Tuple of two forecasting results:
- Point (mean) output predictions as a tensor with shape B x H'.
- Full predictions (mean and quantiles) as a tensor with shape
B x H' x (1 + # quantiles).
In particular, if return_forecast_on_context is True, H' is H plus
the forecastable context length, i.e. context_len - (first) patch_len.
"""
final_out = input_ts
context_len = final_out.shape[1]
full_outputs = []
if paddings.shape[1] != final_out.shape[1] + horizon_len:
raise ValueError(
"Length of paddings must match length of input + horizon_len:"
f" {paddings.shape[1]} != {final_out.shape[1]} + {horizon_len}")
if output_patch_len is None:
output_patch_len = self.config.horizon_len
num_decode_patches = (horizon_len + output_patch_len -
1) // output_patch_len
for step_index in range(num_decode_patches):
current_padding = paddings[:, 0:final_out.shape[1]]
input_ts = final_out[:, -max_len:]
input_padding = current_padding[:, -max_len:]
fprop_outputs = self(input_ts, input_padding, freq)
if return_forecast_on_context and step_index == 0:
# For the first decodings step, collect the model forecast on the
# context except the unavailable first input batch forecast.
new_full_ts = fprop_outputs[:, :-1, :self.config.patch_len, :]
new_full_ts = fprop_outputs.view(new_full_ts.size(0), -1,
new_full_ts.size(3))
full_outputs.append(new_full_ts)
# (full batch, last patch, output_patch_len, index of mean forecast = 0)
new_ts = fprop_outputs[:, -1, :output_patch_len, 0]
new_full_ts = fprop_outputs[:, -1, :output_patch_len, :]
# (full batch, last patch, output_patch_len, all output indices)
full_outputs.append(new_full_ts)
final_out = torch.concatenate([final_out, new_ts], axis=-1)
if return_forecast_on_context:
# `full_outputs` indexing starts at after the first input patch.
full_outputs = torch.concatenate(
full_outputs,
axis=1)[:, :(context_len - self.config.patch_len + horizon_len), :]
else:
# `full_outputs` indexing starts at the forecast horizon.
full_outputs = torch.concatenate(full_outputs, axis=1)[:,
0:horizon_len, :]
return (full_outputs[:, :, 0], full_outputs)
class TimesFM(nn.Module):
def __init__(self, lookback: int = 512, lookahead: int = 96, context_len: int = 512):
super(TimesFM, self).__init__()
self.timesfm = PatchedTimeSeriesDecoder(TimesFMConfig())
self.lookback, self.lookahead = lookback, lookahead
self.context_len = context_len
def load_state_dict(self, state_dict, *args, **kwargs):
return self.timesfm.load_state_dict(state_dict, *args, **kwargs)
def state_dict(self, *args, **kwargs):
return self.timesfm.state_dict(*args, **kwargs)
def pad_tensor(self, x):
B, L = x.shape
device = x.device
dtype = x.dtype
if L < self.context_len:
padded_input = torch.zeros((B, self.context_len), device=device, dtype=dtype)
padded_input[:, -L:] = x
padding = torch.ones((B, self.context_len), device=device, dtype=dtype)
padding[:, -L:] = 0
else:
padded_input = x[:, -self.context_len:]
padding = torch.zeros((B, self.context_len), device=device, dtype=dtype)
freq = torch.zeros((B, 1), device=device, dtype=torch.long)
return padded_input, torch.cat((padding,torch.zeros((B,self.lookahead),device=device,dtype=dtype)),dim=-1), freq
def forward(self, x):
padded_inp, padding, freq = self.pad_tensor(x)
return self.timesfm.decode(padded_inp,padding,freq,self.lookahead)[0] # ignoring quantiles |