|
autoformer_kwargs = lambda lookback,lookahead:{ |
|
'enc_in': 6, |
|
'dec_in': 2, |
|
'c_out': 1, |
|
'pred_len': lookahead, |
|
'seq_len': lookback, |
|
'd_model': 32*4, |
|
'data_idx': [0,3,4,5,6,7], |
|
'time_idx': [1,2] |
|
} |
|
|
|
informer_kwargs = lambda lookback,lookahead:{ |
|
'enc_in': 6, |
|
'dec_in': 2, |
|
'c_out': 1, |
|
'pred_len': lookahead, |
|
'd_model': 32*4, |
|
'data_idx': [0,3,4,5,6,7], |
|
'time_idx': [1,2] |
|
} |
|
|
|
timesnet_kwargs = lambda lookback,lookahead:{ |
|
'enc_in': 6, |
|
'dec_in': 2, |
|
'c_out': 1, |
|
'pred_len': lookahead, |
|
'seq_len': lookback, |
|
'd_model': 32*4, |
|
'data_idx': [0,3,4,5,6,7], |
|
'time_idx': [1,2] |
|
} |
|
|
|
transformer_kwargs = lambda lookback,lookahead:{ |
|
'enc_in': 6, |
|
'dec_in': 2, |
|
'c_out': 1, |
|
'pred_len': lookahead, |
|
'd_model': 32*4, |
|
'data_idx': [0,3,4,5,6,7], |
|
'time_idx': [1,2] |
|
} |
|
|
|
lstm_kwargs = lambda lookback,lookahead:{ |
|
'input_size': 8, |
|
'hidden_size': 8*4, |
|
'num_layers': 2, |
|
'lookback': lookback |
|
} |
|
|
|
lstnet_kwargs = lambda lookback,lookahead:{ |
|
'num_features':8, |
|
'conv1_out_channels':8*4, |
|
'conv1_kernel_height':3*4, |
|
'recc1_out_channels':32*4 |
|
} |
|
|
|
patchtst_kwargs = lambda lookback,lookahead:{ |
|
'enc_in': 6, |
|
'dec_in': 2, |
|
'c_out': 1, |
|
'pred_len': lookahead, |
|
'seq_len': lookback, |
|
'd_model': 32*4, |
|
'data_idx': [0,3,4,5,6,7], |
|
'time_idx': [1,2] |
|
} |
|
|
|
timesfm_kwargs = lambda lookback, lookahead:{ |
|
'lookback': lookback, |
|
'lookahead': lookahead, |
|
'context_len': 512 |
|
} |