|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import math |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
class AutoCorrelation(nn.Module): |
|
""" |
|
AutoCorrelation Mechanism with the following two phases: |
|
(1) period-based dependencies discovery |
|
(2) time delay aggregation |
|
This block can replace the self-attention family mechanism seamlessly. |
|
""" |
|
|
|
def __init__(self, mask_flag=True, factor=1, scale=None, attention_dropout=0.1, output_attention=False): |
|
super(AutoCorrelation, self).__init__() |
|
self.factor = factor |
|
self.scale = scale |
|
self.mask_flag = mask_flag |
|
self.output_attention = output_attention |
|
self.dropout = nn.Dropout(attention_dropout) |
|
|
|
def time_delay_agg_training(self, values, corr): |
|
""" |
|
SpeedUp version of Autocorrelation (a batch-normalization style design) |
|
This is for the training phase. |
|
""" |
|
head = values.shape[1] |
|
channel = values.shape[2] |
|
length = values.shape[3] |
|
|
|
top_k = int(self.factor * math.log(length)) |
|
mean_value = torch.mean(torch.mean(corr, dim=1), dim=1) |
|
index = torch.topk(torch.mean(mean_value, dim=0), top_k, dim=-1)[1] |
|
weights = torch.stack([mean_value[:, index[i]] for i in range(top_k)], dim=-1) |
|
|
|
tmp_corr = torch.softmax(weights, dim=-1) |
|
|
|
tmp_values = values |
|
delays_agg = torch.zeros_like(values).float() |
|
for i in range(top_k): |
|
pattern = torch.roll(tmp_values, -int(index[i]), -1) |
|
delays_agg = delays_agg + pattern * \ |
|
(tmp_corr[:, i].unsqueeze(1).unsqueeze(1).unsqueeze(1).repeat(1, head, channel, length)) |
|
return delays_agg |
|
|
|
def time_delay_agg_inference(self, values, corr): |
|
""" |
|
SpeedUp version of Autocorrelation (a batch-normalization style design) |
|
This is for the inference phase. |
|
""" |
|
batch = values.shape[0] |
|
head = values.shape[1] |
|
channel = values.shape[2] |
|
length = values.shape[3] |
|
|
|
init_index = torch.arange(length).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(batch, head, channel, 1).cuda() |
|
|
|
top_k = int(self.factor * math.log(length)) |
|
mean_value = torch.mean(torch.mean(corr, dim=1), dim=1) |
|
weights, delay = torch.topk(mean_value, top_k, dim=-1) |
|
|
|
tmp_corr = torch.softmax(weights, dim=-1) |
|
|
|
tmp_values = values.repeat(1, 1, 1, 2) |
|
delays_agg = torch.zeros_like(values).float() |
|
for i in range(top_k): |
|
tmp_delay = init_index + delay[:, i].unsqueeze(1).unsqueeze(1).unsqueeze(1).repeat(1, head, channel, length) |
|
pattern = torch.gather(tmp_values, dim=-1, index=tmp_delay) |
|
delays_agg = delays_agg + pattern * \ |
|
(tmp_corr[:, i].unsqueeze(1).unsqueeze(1).unsqueeze(1).repeat(1, head, channel, length)) |
|
return delays_agg |
|
|
|
def time_delay_agg_full(self, values, corr): |
|
""" |
|
Standard version of Autocorrelation |
|
""" |
|
batch = values.shape[0] |
|
head = values.shape[1] |
|
channel = values.shape[2] |
|
length = values.shape[3] |
|
|
|
init_index = torch.arange(length).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(batch, head, channel, 1).cuda() |
|
|
|
top_k = int(self.factor * math.log(length)) |
|
weights, delay = torch.topk(corr, top_k, dim=-1) |
|
|
|
tmp_corr = torch.softmax(weights, dim=-1) |
|
|
|
tmp_values = values.repeat(1, 1, 1, 2) |
|
delays_agg = torch.zeros_like(values).float() |
|
for i in range(top_k): |
|
tmp_delay = init_index + delay[..., i].unsqueeze(-1) |
|
pattern = torch.gather(tmp_values, dim=-1, index=tmp_delay) |
|
delays_agg = delays_agg + pattern * (tmp_corr[..., i].unsqueeze(-1)) |
|
return delays_agg |
|
|
|
def forward(self, queries, keys, values, attn_mask): |
|
B, L, H, E = queries.shape |
|
_, S, _, D = values.shape |
|
if L > S: |
|
zeros = torch.zeros_like(queries[:, :(L - S), :]).float() |
|
values = torch.cat([values, zeros], dim=1) |
|
keys = torch.cat([keys, zeros], dim=1) |
|
else: |
|
values = values[:, :L, :, :] |
|
keys = keys[:, :L, :, :] |
|
|
|
|
|
q_fft = torch.fft.rfft(queries.permute(0, 2, 3, 1).contiguous(), dim=-1) |
|
k_fft = torch.fft.rfft(keys.permute(0, 2, 3, 1).contiguous(), dim=-1) |
|
res = q_fft * torch.conj(k_fft) |
|
corr = torch.fft.irfft(res, dim=-1) |
|
|
|
|
|
if self.training: |
|
V = self.time_delay_agg_training(values.permute(0, 2, 3, 1).contiguous(), corr).permute(0, 3, 1, 2) |
|
else: |
|
V = self.time_delay_agg_inference(values.permute(0, 2, 3, 1).contiguous(), corr).permute(0, 3, 1, 2) |
|
|
|
if self.output_attention: |
|
return (V.contiguous(), corr.permute(0, 3, 1, 2)) |
|
else: |
|
return (V.contiguous(), None) |
|
|
|
|
|
class AutoCorrelationLayer(nn.Module): |
|
def __init__(self, correlation, d_model, n_heads, d_keys=None, |
|
d_values=None): |
|
super(AutoCorrelationLayer, self).__init__() |
|
|
|
d_keys = d_keys or (d_model // n_heads) |
|
d_values = d_values or (d_model // n_heads) |
|
|
|
self.inner_correlation = correlation |
|
self.query_projection = nn.Linear(d_model, d_keys * n_heads) |
|
self.key_projection = nn.Linear(d_model, d_keys * n_heads) |
|
self.value_projection = nn.Linear(d_model, d_values * n_heads) |
|
self.out_projection = nn.Linear(d_values * n_heads, d_model) |
|
self.n_heads = n_heads |
|
|
|
def forward(self, queries, keys, values, attn_mask): |
|
B, L, _ = queries.shape |
|
_, S, _ = keys.shape |
|
H = self.n_heads |
|
|
|
queries = self.query_projection(queries).view(B, L, H, -1) |
|
keys = self.key_projection(keys).view(B, S, H, -1) |
|
values = self.value_projection(values).view(B, S, H, -1) |
|
|
|
out, attn = self.inner_correlation( |
|
queries, |
|
keys, |
|
values, |
|
attn_mask |
|
) |
|
out = out.view(B, L, -1) |
|
|
|
return self.out_projection(out), attn |
|
|
|
class my_Layernorm(nn.Module): |
|
""" |
|
Special designed layernorm for the seasonal part |
|
""" |
|
|
|
def __init__(self, channels): |
|
super(my_Layernorm, self).__init__() |
|
self.layernorm = nn.LayerNorm(channels) |
|
|
|
def forward(self, x): |
|
x_hat = self.layernorm(x) |
|
bias = torch.mean(x_hat, dim=1).unsqueeze(1).repeat(1, x.shape[1], 1) |
|
return x_hat - bias |
|
|
|
|
|
class moving_avg(nn.Module): |
|
""" |
|
Moving average block to highlight the trend of time series |
|
""" |
|
|
|
def __init__(self, kernel_size, stride): |
|
super(moving_avg, self).__init__() |
|
self.kernel_size = kernel_size |
|
self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, padding=0) |
|
|
|
def forward(self, x): |
|
|
|
front = x[:, 0:1, :].repeat(1, (self.kernel_size - 1) // 2, 1) |
|
end = x[:, -1:, :].repeat(1, (self.kernel_size - 1) // 2, 1) |
|
x = torch.cat([front, x, end], dim=1) |
|
x = self.avg(x.permute(0, 2, 1)) |
|
x = x.permute(0, 2, 1) |
|
return x |
|
|
|
|
|
class series_decomp(nn.Module): |
|
""" |
|
Series decomposition block |
|
""" |
|
|
|
def __init__(self, kernel_size): |
|
super(series_decomp, self).__init__() |
|
self.moving_avg = moving_avg(kernel_size, stride=1) |
|
|
|
def forward(self, x): |
|
moving_mean = self.moving_avg(x) |
|
res = x - moving_mean |
|
return res, moving_mean |
|
|
|
|
|
class series_decomp_multi(nn.Module): |
|
""" |
|
Multiple Series decomposition block from FEDformer |
|
""" |
|
|
|
def __init__(self, kernel_size): |
|
super(series_decomp_multi, self).__init__() |
|
self.kernel_size = kernel_size |
|
self.series_decomp = [series_decomp(kernel) for kernel in kernel_size] |
|
|
|
def forward(self, x): |
|
moving_mean = [] |
|
res = [] |
|
for func in self.series_decomp: |
|
sea, moving_avg = func(x) |
|
moving_mean.append(moving_avg) |
|
res.append(sea) |
|
|
|
sea = sum(res) / len(res) |
|
moving_mean = sum(moving_mean) / len(moving_mean) |
|
return sea, moving_mean |
|
|
|
|
|
class EncoderLayer(nn.Module): |
|
""" |
|
Autoformer encoder layer with the progressive decomposition architecture |
|
""" |
|
|
|
def __init__(self, attention, d_model, d_ff=None, moving_avg=25, dropout=0.1, activation="relu"): |
|
super(EncoderLayer, self).__init__() |
|
d_ff = d_ff or 4 * d_model |
|
self.attention = attention |
|
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1, bias=False) |
|
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1, bias=False) |
|
self.decomp1 = series_decomp(moving_avg) |
|
self.decomp2 = series_decomp(moving_avg) |
|
self.dropout = nn.Dropout(dropout) |
|
self.activation = F.relu if activation == "relu" else F.gelu |
|
|
|
def forward(self, x, attn_mask=None): |
|
new_x, attn = self.attention( |
|
x, x, x, |
|
attn_mask=attn_mask |
|
) |
|
x = x + self.dropout(new_x) |
|
x, _ = self.decomp1(x) |
|
y = x |
|
y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1)))) |
|
y = self.dropout(self.conv2(y).transpose(-1, 1)) |
|
res, _ = self.decomp2(x + y) |
|
return res, attn |
|
|
|
|
|
class Encoder(nn.Module): |
|
""" |
|
Autoformer encoder |
|
""" |
|
|
|
def __init__(self, attn_layers, conv_layers=None, norm_layer=None): |
|
super(Encoder, self).__init__() |
|
self.attn_layers = nn.ModuleList(attn_layers) |
|
self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None |
|
self.norm = norm_layer |
|
|
|
def forward(self, x, attn_mask=None): |
|
attns = [] |
|
if self.conv_layers is not None: |
|
for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers): |
|
x, attn = attn_layer(x, attn_mask=attn_mask) |
|
x = conv_layer(x) |
|
attns.append(attn) |
|
x, attn = self.attn_layers[-1](x) |
|
attns.append(attn) |
|
else: |
|
for attn_layer in self.attn_layers: |
|
x, attn = attn_layer(x, attn_mask=attn_mask) |
|
attns.append(attn) |
|
|
|
if self.norm is not None: |
|
x = self.norm(x) |
|
|
|
return x, attns |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
""" |
|
Autoformer decoder layer with the progressive decomposition architecture |
|
""" |
|
|
|
def __init__(self, self_attention, cross_attention, d_model, c_out, d_ff=None, |
|
moving_avg=25, dropout=0.1, activation="relu"): |
|
super(DecoderLayer, self).__init__() |
|
d_ff = d_ff or 4 * d_model |
|
self.self_attention = self_attention |
|
self.cross_attention = cross_attention |
|
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1, bias=False) |
|
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1, bias=False) |
|
self.decomp1 = series_decomp(moving_avg) |
|
self.decomp2 = series_decomp(moving_avg) |
|
self.decomp3 = series_decomp(moving_avg) |
|
self.dropout = nn.Dropout(dropout) |
|
self.projection = nn.Conv1d(in_channels=d_model, out_channels=c_out, kernel_size=3, stride=1, padding=1, |
|
padding_mode='circular', bias=False) |
|
self.activation = F.relu if activation == "relu" else F.gelu |
|
|
|
def forward(self, x, cross, x_mask=None, cross_mask=None): |
|
x = x + self.dropout(self.self_attention( |
|
x, x, x, |
|
attn_mask=x_mask |
|
)[0]) |
|
x, trend1 = self.decomp1(x) |
|
x = x + self.dropout(self.cross_attention( |
|
x, cross, cross, |
|
attn_mask=cross_mask |
|
)[0]) |
|
x, trend2 = self.decomp2(x) |
|
y = x |
|
y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1)))) |
|
y = self.dropout(self.conv2(y).transpose(-1, 1)) |
|
x, trend3 = self.decomp3(x + y) |
|
|
|
residual_trend = trend1 + trend2 + trend3 |
|
residual_trend = self.projection(residual_trend.permute(0, 2, 1)).transpose(1, 2) |
|
return x, residual_trend |
|
|
|
|
|
class Decoder(nn.Module): |
|
""" |
|
Autoformer encoder |
|
""" |
|
|
|
def __init__(self, layers, norm_layer=None, projection=None): |
|
super(Decoder, self).__init__() |
|
self.layers = nn.ModuleList(layers) |
|
self.norm = norm_layer |
|
self.projection = projection |
|
|
|
def forward(self, x, cross, x_mask=None, cross_mask=None, trend=None): |
|
for layer in self.layers: |
|
x, residual_trend = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask) |
|
trend = trend + residual_trend |
|
|
|
if self.norm is not None: |
|
x = self.norm(x) |
|
|
|
if self.projection is not None: |
|
x = self.projection(x) |
|
return x, trend |
|
|
|
class FixedEmbedding(nn.Module): |
|
def __init__(self, c_in, d_model): |
|
super(FixedEmbedding, self).__init__() |
|
|
|
w = torch.zeros(c_in, d_model).float() |
|
w.require_grad = False |
|
|
|
position = torch.arange(0, c_in).float().unsqueeze(1) |
|
div_term = (torch.arange(0, d_model, 2).float() |
|
* -(math.log(10000.0) / d_model)).exp() |
|
|
|
w[:, 0::2] = torch.sin(position * div_term) |
|
w[:, 1::2] = torch.cos(position * div_term) |
|
|
|
self.emb = nn.Embedding(c_in, d_model) |
|
self.emb.weight = nn.Parameter(w, requires_grad=False) |
|
|
|
def forward(self, x): |
|
return self.emb(x).detach() |
|
|
|
class TemporalEmbedding(nn.Module): |
|
def __init__(self, d_model, embed_type='fixed', freq='h'): |
|
super(TemporalEmbedding, self).__init__() |
|
|
|
hour_size = 96 |
|
weekday_size = 7 |
|
|
|
Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding |
|
self.hour_embed = Embed(hour_size, d_model) |
|
self.weekday_embed = Embed(weekday_size, d_model) |
|
|
|
def forward(self, x): |
|
x = x.long() |
|
hour_x = self.hour_embed(x[:, :, 0]) |
|
weekday_x = self.weekday_embed(x[:, :, 1]) |
|
|
|
return hour_x + weekday_x |
|
|
|
class PositionalEmbedding(nn.Module): |
|
def __init__(self, d_model, max_len=5000): |
|
super(PositionalEmbedding, self).__init__() |
|
|
|
pe = torch.zeros(max_len, d_model).float() |
|
pe.require_grad = False |
|
|
|
position = torch.arange(0, max_len).float().unsqueeze(1) |
|
div_term = (torch.arange(0, d_model, 2).float() |
|
* -(math.log(10000.0) / d_model)).exp() |
|
|
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
|
|
pe = pe.unsqueeze(0) |
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x): |
|
return self.pe[:, :x.size(1)] |
|
|
|
class TokenEmbedding(nn.Module): |
|
def __init__(self, c_in, d_model): |
|
super(TokenEmbedding, self).__init__() |
|
padding = 1 if torch.__version__ >= '1.5.0' else 2 |
|
self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model, |
|
kernel_size=3, padding=padding, padding_mode='circular', bias=False) |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv1d): |
|
nn.init.kaiming_normal_( |
|
m.weight, mode='fan_in', nonlinearity='leaky_relu') |
|
|
|
def forward(self, x): |
|
x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2) |
|
return x |
|
|
|
class DataEmbedding_wo_pos(nn.Module): |
|
def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1): |
|
super(DataEmbedding_wo_pos, self).__init__() |
|
|
|
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model) |
|
self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type, |
|
freq=freq) |
|
self.dropout = nn.Dropout(p=dropout) |
|
|
|
def forward(self, x, x_mark): |
|
if x_mark is None: |
|
x = self.value_embedding(x) |
|
else: |
|
x = self.value_embedding(x) + self.temporal_embedding(x_mark) |
|
return self.dropout(x) |
|
|
|
class Autoformer(nn.Module): |
|
""" |
|
Autoformer is the first method to achieve the series-wise connection, |
|
with inherent O(LlogL) complexity |
|
Paper link: https://openreview.net/pdf?id=I55UqU-M11y |
|
""" |
|
|
|
def __init__( |
|
self, |
|
enc_in, |
|
dec_in, |
|
c_out, |
|
pred_len, |
|
seq_len, |
|
d_model = 64, |
|
data_idx = [0,3,4,5,6,7], |
|
time_idx = [1,2], |
|
output_attention = False, |
|
moving_avg_val = 25, |
|
factor = 3, |
|
n_heads = 4, |
|
d_ff = 512, |
|
d_layers = 3, |
|
e_layers = 3, |
|
activation = 'gelu', |
|
dropout = 0.1 |
|
): |
|
super(Autoformer, self).__init__() |
|
self.seq_len = seq_len |
|
self.pred_len = pred_len |
|
self.output_attention = output_attention |
|
self.data_idx = data_idx |
|
self.time_idx = time_idx |
|
dec_in = enc_in |
|
self.dec_in = dec_in |
|
self.label_len = self.seq_len//2 |
|
|
|
|
|
kernel_size = moving_avg_val |
|
self.decomp = series_decomp(kernel_size) |
|
|
|
|
|
self.enc_embedding = DataEmbedding_wo_pos(enc_in, d_model, 'fixed','h', |
|
dropout) |
|
|
|
self.encoder = Encoder( |
|
[ |
|
EncoderLayer( |
|
AutoCorrelationLayer( |
|
AutoCorrelation(False, factor, attention_dropout=dropout, |
|
output_attention=output_attention), |
|
d_model, n_heads), |
|
d_model, |
|
d_ff, |
|
moving_avg=moving_avg_val, |
|
dropout=dropout, |
|
activation=activation |
|
) for l in range(e_layers) |
|
], |
|
norm_layer=my_Layernorm(d_model) |
|
) |
|
|
|
self.dec_embedding = DataEmbedding_wo_pos(dec_in, d_model, 'fixed','h', |
|
dropout) |
|
self.decoder = Decoder( |
|
[ |
|
DecoderLayer( |
|
AutoCorrelationLayer( |
|
AutoCorrelation(True, factor, attention_dropout=dropout, |
|
output_attention=False), |
|
d_model, n_heads), |
|
AutoCorrelationLayer( |
|
AutoCorrelation(False, factor, attention_dropout=dropout, |
|
output_attention=False), |
|
d_model, n_heads), |
|
d_model, |
|
c_out, |
|
d_ff, |
|
moving_avg=moving_avg_val, |
|
dropout=dropout, |
|
activation=activation, |
|
) |
|
for l in range(d_layers) |
|
], |
|
norm_layer=my_Layernorm(d_model), |
|
projection=nn.Linear(d_model, c_out, bias=True) |
|
) |
|
|
|
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec): |
|
|
|
mean = torch.mean(x_enc, dim=1).unsqueeze(1).repeat(1, self.pred_len, 1) |
|
zeros = torch.zeros([x_mark_dec.shape[0], self.pred_len,self.dec_in], device=x_enc.device) |
|
seasonal_init, trend_init = self.decomp(x_enc) |
|
|
|
trend_init = torch.cat([trend_init[:, -self.label_len:, :], mean], dim=1) |
|
seasonal_init = torch.cat([seasonal_init[:, -self.label_len:, :], zeros], dim=1) |
|
|
|
enc_out = self.enc_embedding(x_enc, x_mark_enc) |
|
enc_out, attns = self.encoder(enc_out, attn_mask=None) |
|
|
|
x_mark_dec = torch.cat([x_mark_enc,x_mark_dec],dim=1)[:,-(self.label_len+self.pred_len):,:] |
|
dec_out = self.dec_embedding(seasonal_init, x_mark_dec) |
|
seasonal_part, trend_part = self.decoder(dec_out, enc_out, x_mask=None, cross_mask=None, |
|
trend=trend_init) |
|
dec_out = trend_part + seasonal_part |
|
|
|
|
|
return dec_out[:, -self.pred_len:, :] |
|
|
|
def forward(self, x, fut_time): |
|
|
|
x_enc = x[:,:,self.data_idx] |
|
x_mark_enc = x[:,:,self.time_idx] |
|
|
|
x_mark_dec = fut_time |
|
|
|
|
|
|
|
return self.forecast(x_enc, x_mark_enc, None, x_mark_dec)[:,-1,[0]] |