|
import torch |
|
import torch.nn as nn |
|
import math |
|
from math import sqrt |
|
import numpy as np |
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
|
class ConvLayer(nn.Module): |
|
def __init__(self, c_in): |
|
super(ConvLayer, self).__init__() |
|
self.downConv = nn.Conv1d(in_channels=c_in, |
|
out_channels=c_in, |
|
kernel_size=3, |
|
padding=2, |
|
padding_mode='circular') |
|
self.norm = nn.BatchNorm1d(c_in) |
|
self.activation = nn.ELU() |
|
self.maxPool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1) |
|
|
|
def forward(self, x): |
|
x = self.downConv(x.permute(0, 2, 1)) |
|
x = self.norm(x) |
|
x = self.activation(x) |
|
x = self.maxPool(x) |
|
x = x.transpose(1, 2) |
|
return x |
|
|
|
class ProbMask(): |
|
def __init__(self, B, H, L, index, scores, device="cpu"): |
|
_mask = torch.ones(L, scores.shape[-1], dtype=torch.bool).to(device).triu(1) |
|
_mask_ex = _mask[None, None, :].expand(B, H, L, scores.shape[-1]) |
|
indicator = _mask_ex[torch.arange(B)[:, None, None], |
|
torch.arange(H)[None, :, None], |
|
index, :].to(device) |
|
self._mask = indicator.view(scores.shape).to(device) |
|
|
|
@property |
|
def mask(self): |
|
return self._mask |
|
|
|
class ProbAttention(nn.Module): |
|
def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False): |
|
super(ProbAttention, self).__init__() |
|
self.factor = factor |
|
self.scale = scale |
|
self.mask_flag = mask_flag |
|
self.output_attention = output_attention |
|
self.dropout = nn.Dropout(attention_dropout) |
|
|
|
def _prob_QK(self, Q, K, sample_k, n_top): |
|
|
|
B, H, L_K, E = K.shape |
|
_, _, L_Q, _ = Q.shape |
|
|
|
|
|
K_expand = K.unsqueeze(-3).expand(B, H, L_Q, L_K, E) |
|
index_sample = torch.randint(L_K, (L_Q, sample_k)) |
|
K_sample = K_expand[:, :, torch.arange(L_Q).unsqueeze(1), index_sample, :] |
|
Q_K_sample = torch.matmul(Q.unsqueeze(-2), K_sample.transpose(-2, -1)).squeeze() |
|
|
|
|
|
M = Q_K_sample.max(-1)[0] - torch.div(Q_K_sample.sum(-1), L_K) |
|
M_top = M.topk(n_top, sorted=False)[1] |
|
|
|
|
|
Q_reduce = Q[torch.arange(B)[:, None, None], |
|
torch.arange(H)[None, :, None], |
|
M_top, :] |
|
Q_K = torch.matmul(Q_reduce, K.transpose(-2, -1)) |
|
|
|
return Q_K, M_top |
|
|
|
def _get_initial_context(self, V, L_Q): |
|
B, H, L_V, D = V.shape |
|
if not self.mask_flag: |
|
|
|
V_sum = V.mean(dim=-2) |
|
contex = V_sum.unsqueeze(-2).expand(B, H, L_Q, V_sum.shape[-1]).clone() |
|
else: |
|
assert (L_Q == L_V) |
|
contex = V.cumsum(dim=-2) |
|
return contex |
|
|
|
def _update_context(self, context_in, V, scores, index, L_Q, attn_mask): |
|
B, H, L_V, D = V.shape |
|
|
|
if self.mask_flag: |
|
attn_mask = ProbMask(B, H, L_Q, index, scores, device=V.device) |
|
scores.masked_fill_(attn_mask.mask, -np.inf) |
|
|
|
attn = torch.softmax(scores, dim=-1) |
|
|
|
context_in[torch.arange(B)[:, None, None], |
|
torch.arange(H)[None, :, None], |
|
index, :] = torch.matmul(attn, V).type_as(context_in) |
|
if self.output_attention: |
|
attns = (torch.ones([B, H, L_V, L_V]) / L_V).type_as(attn).to(attn.device) |
|
attns[torch.arange(B)[:, None, None], torch.arange(H)[None, :, None], index, :] = attn |
|
return (context_in, attns) |
|
else: |
|
return (context_in, None) |
|
|
|
def forward(self, queries, keys, values, attn_mask): |
|
B, L_Q, H, D = queries.shape |
|
_, L_K, _, _ = keys.shape |
|
|
|
queries = queries.transpose(2, 1) |
|
keys = keys.transpose(2, 1) |
|
values = values.transpose(2, 1) |
|
|
|
U_part = self.factor * np.ceil(np.log(L_K)).astype('int').item() |
|
u = self.factor * np.ceil(np.log(L_Q)).astype('int').item() |
|
|
|
U_part = U_part if U_part < L_K else L_K |
|
u = u if u < L_Q else L_Q |
|
|
|
scores_top, index = self._prob_QK(queries, keys, sample_k=U_part, n_top=u) |
|
|
|
|
|
scale = self.scale or 1. / sqrt(D) |
|
if scale is not None: |
|
scores_top = scores_top * scale |
|
|
|
context = self._get_initial_context(values, L_Q) |
|
|
|
context, attn = self._update_context(context, values, scores_top, index, L_Q, attn_mask) |
|
|
|
return context.contiguous(), attn |
|
|
|
|
|
class AttentionLayer(nn.Module): |
|
def __init__(self, attention, d_model, n_heads, d_keys=None, |
|
d_values=None): |
|
super(AttentionLayer, self).__init__() |
|
|
|
d_keys = d_keys or (d_model // n_heads) |
|
d_values = d_values or (d_model // n_heads) |
|
|
|
self.inner_attention = attention |
|
self.query_projection = nn.Linear(d_model, d_keys * n_heads) |
|
self.key_projection = nn.Linear(d_model, d_keys * n_heads) |
|
self.value_projection = nn.Linear(d_model, d_values * n_heads) |
|
self.out_projection = nn.Linear(d_values * n_heads, d_model) |
|
self.n_heads = n_heads |
|
|
|
def forward(self, queries, keys, values, attn_mask): |
|
B, L, _ = queries.shape |
|
_, S, _ = keys.shape |
|
H = self.n_heads |
|
|
|
queries = self.query_projection(queries).view(B, L, H, -1) |
|
keys = self.key_projection(keys).view(B, S, H, -1) |
|
values = self.value_projection(values).view(B, S, H, -1) |
|
|
|
out, attn = self.inner_attention( |
|
queries, |
|
keys, |
|
values, |
|
attn_mask |
|
) |
|
out = out.view(B, L, -1) |
|
|
|
return self.out_projection(out), attn |
|
|
|
class EncoderLayer(nn.Module): |
|
def __init__(self, attention, d_model, d_ff=None, dropout=0.1, activation="relu"): |
|
super(EncoderLayer, self).__init__() |
|
d_ff = d_ff or 4 * d_model |
|
self.attention = attention |
|
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1) |
|
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1) |
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
self.dropout = nn.Dropout(dropout) |
|
self.activation = F.relu if activation == "relu" else F.gelu |
|
|
|
def forward(self, x, attn_mask=None): |
|
new_x, attn = self.attention( |
|
x, x, x, |
|
attn_mask=attn_mask |
|
) |
|
x = x + self.dropout(new_x) |
|
|
|
y = x = self.norm1(x) |
|
y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1)))) |
|
y = self.dropout(self.conv2(y).transpose(-1, 1)) |
|
|
|
return self.norm2(x + y), attn |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, attn_layers, conv_layers=None, norm_layer=None): |
|
super(Encoder, self).__init__() |
|
self.attn_layers = nn.ModuleList(attn_layers) |
|
self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None |
|
self.norm = norm_layer |
|
|
|
def forward(self, x, attn_mask=None): |
|
|
|
attns = [] |
|
if self.conv_layers is not None: |
|
for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers): |
|
x, attn = attn_layer(x, attn_mask=attn_mask) |
|
x = conv_layer(x) |
|
attns.append(attn) |
|
x, attn = self.attn_layers[-1](x) |
|
attns.append(attn) |
|
else: |
|
for attn_layer in self.attn_layers: |
|
x, attn = attn_layer(x, attn_mask=attn_mask) |
|
attns.append(attn) |
|
|
|
if self.norm is not None: |
|
x = self.norm(x) |
|
|
|
return x, attns |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
def __init__(self, self_attention, cross_attention, d_model, d_ff=None, |
|
dropout=0.1, activation="relu"): |
|
super(DecoderLayer, self).__init__() |
|
d_ff = d_ff or 4 * d_model |
|
self.self_attention = self_attention |
|
self.cross_attention = cross_attention |
|
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1) |
|
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1) |
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
self.norm3 = nn.LayerNorm(d_model) |
|
self.dropout = nn.Dropout(dropout) |
|
self.activation = F.relu if activation == "relu" else F.gelu |
|
|
|
def forward(self, x, cross, x_mask=None, cross_mask=None): |
|
x = x + self.dropout(self.self_attention( |
|
x, x, x, |
|
attn_mask=x_mask |
|
)[0]) |
|
x = self.norm1(x) |
|
|
|
x = x + self.dropout(self.cross_attention( |
|
x, cross, cross, |
|
attn_mask=cross_mask |
|
)[0]) |
|
|
|
y = x = self.norm2(x) |
|
y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1)))) |
|
y = self.dropout(self.conv2(y).transpose(-1, 1)) |
|
|
|
return self.norm3(x + y) |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, layers, norm_layer=None, projection=None): |
|
super(Decoder, self).__init__() |
|
self.layers = nn.ModuleList(layers) |
|
self.norm = norm_layer |
|
self.projection = projection |
|
|
|
def forward(self, x, cross, x_mask=None, cross_mask=None): |
|
for layer in self.layers: |
|
x = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask) |
|
|
|
if self.norm is not None: |
|
x = self.norm(x) |
|
|
|
if self.projection is not None: |
|
x = self.projection(x) |
|
return x |
|
|
|
class PositionalEmbedding(nn.Module): |
|
def __init__(self, d_model, max_len=5000): |
|
super(PositionalEmbedding, self).__init__() |
|
|
|
pe = torch.zeros(max_len, d_model).float() |
|
pe.require_grad = False |
|
|
|
position = torch.arange(0, max_len).float().unsqueeze(1) |
|
div_term = (torch.arange(0, d_model, 2).float() |
|
* -(math.log(10000.0) / d_model)).exp() |
|
|
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
|
|
pe = pe.unsqueeze(0) |
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x): |
|
return self.pe[:, :x.size(1)] |
|
|
|
class FixedEmbedding(nn.Module): |
|
def __init__(self, c_in, d_model): |
|
super(FixedEmbedding, self).__init__() |
|
|
|
w = torch.zeros(c_in, d_model).float() |
|
w.require_grad = False |
|
|
|
position = torch.arange(0, c_in).float().unsqueeze(1) |
|
div_term = (torch.arange(0, d_model, 2).float() |
|
* -(math.log(10000.0) / d_model)).exp() |
|
|
|
w[:, 0::2] = torch.sin(position * div_term) |
|
w[:, 1::2] = torch.cos(position * div_term) |
|
|
|
self.emb = nn.Embedding(c_in, d_model) |
|
self.emb.weight = nn.Parameter(w, requires_grad=False) |
|
|
|
def forward(self, x): |
|
return self.emb(x).detach() |
|
|
|
class TemporalEmbedding(nn.Module): |
|
def __init__(self, d_model, embed_type='fixed', freq='h'): |
|
super(TemporalEmbedding, self).__init__() |
|
|
|
hour_size = 96 |
|
weekday_size = 7 |
|
|
|
Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding |
|
self.hour_embed = Embed(hour_size, d_model) |
|
self.weekday_embed = Embed(weekday_size, d_model) |
|
|
|
def forward(self, x): |
|
x = x.long() |
|
hour_x = self.hour_embed(x[:, :, 0]) |
|
weekday_x = self.weekday_embed(x[:, :, 1]) |
|
|
|
return hour_x + weekday_x |
|
|
|
class TokenEmbedding(nn.Module): |
|
def __init__(self, c_in, d_model): |
|
super(TokenEmbedding, self).__init__() |
|
padding = 1 if torch.__version__ >= '1.5.0' else 2 |
|
self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model, |
|
kernel_size=3, padding=padding, padding_mode='circular', bias=False) |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv1d): |
|
nn.init.kaiming_normal_( |
|
m.weight, mode='fan_in', nonlinearity='leaky_relu') |
|
|
|
def forward(self, x): |
|
x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2) |
|
return x |
|
|
|
class DataEmbedding(nn.Module): |
|
def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1): |
|
super(DataEmbedding, self).__init__() |
|
|
|
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model) |
|
self.position_embedding = PositionalEmbedding(d_model=d_model) |
|
self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type, |
|
freq=freq) |
|
self.dropout = nn.Dropout(p=dropout) |
|
|
|
def forward(self, x, x_mark): |
|
if x_mark is None: |
|
x = self.value_embedding(x) + self.position_embedding(x) |
|
else: |
|
x = self.value_embedding(x) + self.temporal_embedding(x_mark) + self.position_embedding(x) |
|
return self.dropout(x) |
|
|
|
class Informer(nn.Module): |
|
""" |
|
Informer with Propspare attention in O(LlogL) complexity |
|
""" |
|
def __init__( |
|
self, |
|
enc_in, |
|
dec_in, |
|
c_out, |
|
pred_len, |
|
output_attention = False, |
|
data_idx = [0,3,4,5,6,7], |
|
time_idx = [1,2], |
|
d_model = 16, |
|
factor = 3, |
|
n_heads = 4, |
|
d_ff = 512, |
|
d_layers = 3, |
|
e_layers = 3, |
|
activation = 'gelu', |
|
dropout = 0.1 |
|
): |
|
super(Informer, self).__init__() |
|
self.pred_len = pred_len |
|
self.output_attention = output_attention |
|
self.data_idx = data_idx |
|
self.time_idx = time_idx |
|
self.dec_in = dec_in |
|
|
|
|
|
self.enc_embedding = DataEmbedding(enc_in, d_model, 'fixed', 'h', |
|
dropout) |
|
self.dec_embedding = DataEmbedding(dec_in, d_model,'fixed', 'h', |
|
dropout) |
|
|
|
|
|
self.encoder = Encoder( |
|
[ |
|
EncoderLayer( |
|
AttentionLayer( |
|
ProbAttention(False, factor, attention_dropout=dropout, |
|
output_attention=output_attention), |
|
d_model, n_heads), |
|
d_model, |
|
d_ff, |
|
dropout=dropout, |
|
activation=activation |
|
) for l in range(e_layers) |
|
], |
|
[ |
|
ConvLayer( |
|
d_model |
|
) for l in range(e_layers - 1) |
|
], |
|
norm_layer=torch.nn.LayerNorm(d_model) |
|
) |
|
|
|
self.decoder = Decoder( |
|
[ |
|
DecoderLayer( |
|
AttentionLayer( |
|
ProbAttention(True, factor, attention_dropout=dropout, output_attention=False), |
|
d_model, n_heads), |
|
AttentionLayer( |
|
ProbAttention(False, factor, attention_dropout=dropout, output_attention=False), |
|
d_model, n_heads), |
|
d_model, |
|
d_ff, |
|
dropout=dropout, |
|
activation=activation, |
|
) |
|
for l in range(d_layers) |
|
], |
|
norm_layer=torch.nn.LayerNorm(d_model), |
|
projection=nn.Linear(d_model, c_out, bias=True) |
|
) |
|
|
|
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec, |
|
enc_self_mask=None, dec_self_mask=None, dec_enc_mask=None): |
|
|
|
enc_out = self.enc_embedding(x_enc, x_mark_enc) |
|
enc_out, attns = self.encoder(enc_out, attn_mask=enc_self_mask) |
|
|
|
dec_out = self.dec_embedding(x_dec, x_mark_dec) |
|
dec_out = self.decoder(dec_out, enc_out, x_mask=dec_self_mask, cross_mask=dec_enc_mask) |
|
|
|
if self.output_attention: |
|
return dec_out[:, -self.pred_len:, :], attns |
|
else: |
|
return dec_out[:, -self.pred_len:, :] |
|
|
|
def forward(self, x, fut_time): |
|
|
|
x_enc = x[:,:,self.data_idx] |
|
x_mark_enc = x[:,:,self.time_idx] |
|
x_dec = torch.zeros((fut_time.shape[0],fut_time.shape[1],self.dec_in),dtype=fut_time.dtype,device=fut_time.device) |
|
x_mark_dec = fut_time |
|
|
|
return self.forecast(x_enc,x_mark_enc,x_dec,x_mark_dec)[:,-1,[0]] |