Shourya Bose
updated models for L=512
4cc7625
raw
history blame
13.4 kB
import torch
from torch import nn
import torch.nn.functional as F
import math
from math import sqrt
import numpy as np
# Modified from: https://github.com/thuml/Time-Series-Library
# Modified by Shourya Bose, shbose@ucsc.edu
class PositionalEmbedding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEmbedding, self).__init__()
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model).float()
pe.require_grad = False
position = torch.arange(0, max_len).float().unsqueeze(1)
div_term = (torch.arange(0, d_model, 2).float()
* -(math.log(10000.0) / d_model)).exp()
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
return self.pe[:, :x.size(1)]
class PatchEmbedding(nn.Module):
def __init__(self, d_model, patch_len, stride, padding, dropout):
super(PatchEmbedding, self).__init__()
# Patching
self.patch_len = patch_len
self.stride = stride
self.padding_patch_layer = nn.ReplicationPad1d((0, padding))
# Backbone, Input encoding: projection of feature vectors onto a d-dim vector space
self.value_embedding = nn.Linear(patch_len, d_model, bias=False)
# Positional embedding
self.position_embedding = PositionalEmbedding(d_model)
# Residual dropout
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# do patching
n_vars = x.shape[1]
x = self.padding_patch_layer(x)
x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
x = torch.reshape(x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3]))
# Input encoding
x = self.value_embedding(x) + self.position_embedding(x)
return self.dropout(x), n_vars
class AttentionLayer(nn.Module):
def __init__(self, attention, d_model, n_heads, d_keys=None,
d_values=None):
super(AttentionLayer, self).__init__()
d_keys = d_keys or (d_model // n_heads)
d_values = d_values or (d_model // n_heads)
self.inner_attention = attention
self.query_projection = nn.Linear(d_model, d_keys * n_heads)
self.key_projection = nn.Linear(d_model, d_keys * n_heads)
self.value_projection = nn.Linear(d_model, d_values * n_heads)
self.out_projection = nn.Linear(d_values * n_heads, d_model)
self.n_heads = n_heads
def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
B, L, _ = queries.shape
_, S, _ = keys.shape
H = self.n_heads
queries = self.query_projection(queries).view(B, L, H, -1)
keys = self.key_projection(keys).view(B, S, H, -1)
values = self.value_projection(values).view(B, S, H, -1)
out, attn = self.inner_attention(
queries,
keys,
values,
attn_mask,
tau=tau,
delta=delta
)
out = out.view(B, L, -1)
return self.out_projection(out), attn
class FullAttention(nn.Module):
def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
super(FullAttention, self).__init__()
self.scale = scale
self.mask_flag = mask_flag
self.output_attention = output_attention
self.dropout = nn.Dropout(attention_dropout)
def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
B, L, H, E = queries.shape
_, S, _, D = values.shape
scale = self.scale or 1. / sqrt(E)
scores = torch.einsum("blhe,bshe->bhls", queries, keys)
if self.mask_flag:
if attn_mask is None:
attn_mask = TriangularCausalMask(B, L, device=queries.device)
scores.masked_fill_(attn_mask.mask, -np.inf)
A = self.dropout(torch.softmax(scale * scores, dim=-1))
V = torch.einsum("bhls,bshd->blhd", A, values)
if self.output_attention:
return V.contiguous(), A
else:
return V.contiguous(), None
class TriangularCausalMask():
def __init__(self, B, L, device="cpu"):
mask_shape = [B, 1, L, L]
with torch.no_grad():
self._mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1).to(device)
@property
def mask(self):
return self._mask
class FullAttention(nn.Module):
def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
super(FullAttention, self).__init__()
self.scale = scale
self.mask_flag = mask_flag
self.output_attention = output_attention
self.dropout = nn.Dropout(attention_dropout)
def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
B, L, H, E = queries.shape
_, S, _, D = values.shape
scale = self.scale or 1. / sqrt(E)
scores = torch.einsum("blhe,bshe->bhls", queries, keys)
if self.mask_flag:
if attn_mask is None:
attn_mask = TriangularCausalMask(B, L, device=queries.device)
scores.masked_fill_(attn_mask.mask, -np.inf)
A = self.dropout(torch.softmax(scale * scores, dim=-1))
V = torch.einsum("bhls,bshd->blhd", A, values)
if self.output_attention:
return V.contiguous(), A
else:
return V.contiguous(), None
class AttentionLayer(nn.Module):
def __init__(self, attention, d_model, n_heads, d_keys=None,
d_values=None):
super(AttentionLayer, self).__init__()
d_keys = d_keys or (d_model // n_heads)
d_values = d_values or (d_model // n_heads)
self.inner_attention = attention
self.query_projection = nn.Linear(d_model, d_keys * n_heads)
self.key_projection = nn.Linear(d_model, d_keys * n_heads)
self.value_projection = nn.Linear(d_model, d_values * n_heads)
self.out_projection = nn.Linear(d_values * n_heads, d_model)
self.n_heads = n_heads
def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
B, L, _ = queries.shape
_, S, _ = keys.shape
H = self.n_heads
queries = self.query_projection(queries).view(B, L, H, -1)
keys = self.key_projection(keys).view(B, S, H, -1)
values = self.value_projection(values).view(B, S, H, -1)
out, attn = self.inner_attention(
queries,
keys,
values,
attn_mask,
tau=tau,
delta=delta
)
out = out.view(B, L, -1)
return self.out_projection(out), attn
class EncoderLayer(nn.Module):
def __init__(self, attention, d_model, d_ff=None, dropout=0.1, activation="relu"):
super(EncoderLayer, self).__init__()
d_ff = d_ff or 4 * d_model
self.attention = attention
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.activation = F.relu if activation == "relu" else F.gelu
def forward(self, x, attn_mask=None, tau=None, delta=None):
new_x, attn = self.attention(
x, x, x,
attn_mask=attn_mask,
tau=tau, delta=delta
)
x = x + self.dropout(new_x)
y = x = self.norm1(x)
y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
y = self.dropout(self.conv2(y).transpose(-1, 1))
return self.norm2(x + y), attn
class Encoder(nn.Module):
def __init__(self, attn_layers, conv_layers=None, norm_layer=None):
super(Encoder, self).__init__()
self.attn_layers = nn.ModuleList(attn_layers)
self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None
self.norm = norm_layer
def forward(self, x, attn_mask=None, tau=None, delta=None):
# x [B, L, D]
attns = []
if self.conv_layers is not None:
for i, (attn_layer, conv_layer) in enumerate(zip(self.attn_layers, self.conv_layers)):
delta = delta if i == 0 else None
x, attn = attn_layer(x, attn_mask=attn_mask, tau=tau, delta=delta)
x = conv_layer(x)
attns.append(attn)
x, attn = self.attn_layers[-1](x, tau=tau, delta=None)
attns.append(attn)
else:
for attn_layer in self.attn_layers:
x, attn = attn_layer(x, attn_mask=attn_mask, tau=tau, delta=delta)
attns.append(attn)
if self.norm is not None:
x = self.norm(x)
return x, attns
class Transpose(nn.Module):
def __init__(self, *dims, contiguous=False):
super().__init__()
self.dims, self.contiguous = dims, contiguous
def forward(self, x):
if self.contiguous: return x.transpose(*self.dims).contiguous()
else: return x.transpose(*self.dims)
class FlattenHead(nn.Module):
def __init__(self, n_vars, nf, target_window, head_dropout=0):
super().__init__()
self.n_vars = n_vars
self.flatten = nn.Flatten(start_dim=-2)
self.linear = nn.Linear(nf, target_window)
self.dropout = nn.Dropout(head_dropout)
def forward(self, x): # x: [bs x nvars x d_model x patch_num]
x = self.flatten(x)
x = self.linear(x)
x = self.dropout(x)
return x
class PatchTST(nn.Module):
"""
Paper link: https://arxiv.org/pdf/2211.14730.pdf
"""
def __init__(
self,
enc_in,
dec_in, # unused
c_out, # unused
pred_len,
seq_len,
d_model = 64,
patch_len = 16,
stride = 8,
data_idx = [0,3,4,5,6,7],
time_idx = [1,2],
output_attention = False,
factor = 3,
n_heads = 4,
d_ff = 512,
e_layers = 3,
activation = 'gelu',
dropout = 0.1
):
#(self, configs, patch_len=16, stride=8):
"""
patch_len: int, patch len for patch_embedding
stride: int, stride for patch_embedding
"""
super().__init__()
self.seq_len = seq_len
self.pred_len = pred_len
self.data_idx = data_idx
self.time_idx = time_idx
self.dec_in = dec_in
padding = stride
# patching and embedding
self.patch_embedding = PatchEmbedding(
d_model, patch_len, stride, padding, dropout)
# Encoder
self.encoder = Encoder(
[
EncoderLayer(
AttentionLayer(
FullAttention(False, factor, attention_dropout=dropout,
output_attention=output_attention), d_model, n_heads),
d_model,
d_ff,
dropout=dropout,
activation=activation
) for l in range(e_layers)
],
norm_layer=nn.Sequential(Transpose(1,2), nn.BatchNorm1d(d_model), Transpose(1,2))
)
# Prediction Head
self.head_nf = d_model * \
int((seq_len - patch_len) / stride + 2)
self.head = FlattenHead(enc_in, self.head_nf,pred_len,
head_dropout=dropout)
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
# Normalization from Non-stationary Transformer
means = x_enc.mean(1, keepdim=True).detach()
x_enc = x_enc - means
stdev = torch.sqrt(
torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
x_enc /= stdev
# do patching and embedding
x_enc = x_enc.permute(0, 2, 1)
# u: [bs * nvars x patch_num x d_model]
enc_out, n_vars = self.patch_embedding(x_enc)
# Encoder
# z: [bs * nvars x patch_num x d_model]
enc_out, attns = self.encoder(enc_out)
# z: [bs x nvars x patch_num x d_model]
enc_out = torch.reshape(
enc_out, (-1, n_vars, enc_out.shape[-2], enc_out.shape[-1]))
# z: [bs x nvars x d_model x patch_num]
enc_out = enc_out.permute(0, 1, 3, 2)
# Decoder
dec_out = self.head(enc_out) # z: [bs x nvars x target_window]
dec_out = dec_out.permute(0, 2, 1)
# De-Normalization from Non-stationary Transformer
dec_out = dec_out * \
(stdev[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
dec_out = dec_out + \
(means[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
return dec_out
def forward(self, x, fut_time):
x_enc = x[:,:,self.data_idx]
x_mark_enc = x[:,:,self.time_idx]
x_dec = torch.zeros((fut_time.shape[0],fut_time.shape[1],self.dec_in),dtype=fut_time.dtype,device=fut_time.device)
x_mark_dec = fut_time
return self.forecast(x_enc,x_mark_enc,x_dec,x_mark_dec)[:,-1,[0]]