Building_load_forecasting / model_kwargs.py
Shourya Bose
add timefm weights
a9073bb
autoformer_kwargs = lambda lookback,lookahead:{
'enc_in': 6,
'dec_in': 2,
'c_out': 1,
'pred_len': lookahead,
'seq_len': lookback,
'd_model': 32*4,
'data_idx': [0,3,4,5,6,7],
'time_idx': [1,2]
}
informer_kwargs = lambda lookback,lookahead:{
'enc_in': 6,
'dec_in': 2,
'c_out': 1,
'pred_len': lookahead,
'd_model': 32*4,
'data_idx': [0,3,4,5,6,7],
'time_idx': [1,2]
}
timesnet_kwargs = lambda lookback,lookahead:{
'enc_in': 6,
'dec_in': 2,
'c_out': 1,
'pred_len': lookahead,
'seq_len': lookback,
'd_model': 32*4,
'data_idx': [0,3,4,5,6,7],
'time_idx': [1,2]
}
transformer_kwargs = lambda lookback,lookahead:{
'enc_in': 6,
'dec_in': 2,
'c_out': 1,
'pred_len': lookahead,
'd_model': 32*4,
'data_idx': [0,3,4,5,6,7],
'time_idx': [1,2]
}
lstm_kwargs = lambda lookback,lookahead:{
'input_size': 8,
'hidden_size': 8*4,
'num_layers': 2,
'lookback': lookback
}
lstnet_kwargs = lambda lookback,lookahead:{
'num_features':8,
'conv1_out_channels':8*4,
'conv1_kernel_height':3*4,
'recc1_out_channels':32*4
}
patchtst_kwargs = lambda lookback,lookahead:{
'enc_in': 6,
'dec_in': 2,
'c_out': 1,
'pred_len': lookahead,
'seq_len': lookback,
'd_model': 32*4,
'data_idx': [0,3,4,5,6,7],
'time_idx': [1,2]
}
timesfm_kwargs = lambda lookback, lookahead:{
'lookback': lookback,
'lookahead': lookahead,
'context_len': 512
}