File size: 2,103 Bytes
62a9a9e
 
 
 
 
 
8c1f29b
62a9a9e
 
 
 
 
 
 
 
 
8c1f29b
62a9a9e
 
 
 
 
8c1f29b
62a9a9e
8c1f29b
62a9a9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
language:
- hi
license: apache-2.0
tags:
- generated_from_trainer
base_model: Aakali/whisper-medium-hi
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper medium-translate Hi - Aa
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      args: 'config: hi, split: test'
    metrics:
    - type: wer
      value: 48.11612382957753
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper medium-translate Hi - Aa

This model is a fine-tuned version of [Aakali/whisper-medium-hi](https://huggingface.co/Aakali/whisper-medium-hi) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9904
- Wer: 48.1161

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.1405        | 2.4450  | 1000 | 0.7580          | 51.5075 |
| 0.0245        | 4.8900  | 2000 | 0.8571          | 51.4000 |
| 0.0026        | 7.3350  | 3000 | 0.9280          | 48.3132 |
| 0.0011        | 9.7800  | 4000 | 0.9673          | 47.6457 |
| 0.0006        | 12.2249 | 5000 | 0.9904          | 48.1161 |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1