Activator / activator_only_GEGLU.py
Abdullah-Nazhat's picture
Upload 4 files
2bd9f2a verified
raw
history blame
1.94 kB
import torch
from torch import nn
"""class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)"""
class ActivatorGatingUnit(nn.Module):
def __init__(self,dim, hidden_dim):
super().__init__()
self.proj_1 = nn.Linear(dim, hidden_dim)
self.proj_2 = nn.Linear(dim, hidden_dim)
self.proj_3 = nn.Linear(hidden_dim , dim)
self.gelu = nn.GELU()
self.norm = nn.LayerNorm(hidden_dim)
def forward(self, x):
u, v = x, x
u = self.proj_1(u)
u = self.gelu(u)
u = self.norm(u)
v = self.proj_2(v)
v = self.norm(v)
g = u * v
out = self.proj_3(g)
return out
class ActivatorBlock(nn.Module):
def __init__(self, d_model, d_ffn,dropout):
super().__init__()
self.norm = nn.LayerNorm(d_model)
self.actgu = ActivatorGatingUnit(d_model, d_ffn)
#self.ffn = FeedForward(d_model,d_ffn,dropout)
def forward(self, x):
residual = x
x = self.norm(x)
x = self.actgu(x)
x = x + residual
#residual = x
#x = self.norm(x)
#x = self.ffn(x)
#out = x + residual
out = x
return out
class ACTIVATOR(nn.Module):
def __init__(self, d_model, d_ffn, num_layers,dropout):
super().__init__()
self.model = nn.Sequential(
*[ActivatorBlock(d_model,d_ffn,dropout) for _ in range(num_layers)]
)
def forward(self, x):
return self.model(x)