|
import torch |
|
from torch import nn |
|
|
|
|
|
|
|
|
|
|
|
|
|
class ActivatorGatingUnit(nn.Module): |
|
def __init__(self,dim, hidden_dim): |
|
super().__init__() |
|
self.proj_1 = nn.Linear(dim, hidden_dim) |
|
self.proj_2 = nn.Linear(dim, hidden_dim) |
|
self.proj_3 = nn.Linear(hidden_dim , dim) |
|
self.gelu = nn.GELU() |
|
self.norm = nn.LayerNorm(hidden_dim) |
|
|
|
def forward(self, x): |
|
u, v = x, x |
|
u = self.proj_1(u) |
|
u = self.gelu(u) |
|
u = self.norm(u) |
|
|
|
v = self.proj_2(v) |
|
v = self.norm(v) |
|
|
|
g = u * v |
|
|
|
out = self.proj_3(g) |
|
return out |
|
|
|
|
|
|
|
class ActivatorBlock(nn.Module): |
|
def __init__(self, d_model, d_ffn,dropout): |
|
super().__init__() |
|
|
|
self.norm = nn.LayerNorm(d_model) |
|
self.actgu = ActivatorGatingUnit(d_model, d_ffn) |
|
|
|
def forward(self, x): |
|
residual = x |
|
x = self.norm(x) |
|
x = self.actgu(x) |
|
x = x + residual |
|
|
|
out = x |
|
return out |
|
|
|
|
|
|
|
class ACTIVATOR(nn.Module): |
|
def __init__(self, d_model, d_ffn, num_layers,dropout): |
|
super().__init__() |
|
|
|
self.model = nn.Sequential( |
|
*[ActivatorBlock(d_model,d_ffn,dropout) for _ in range(num_layers)] |
|
) |
|
|
|
def forward(self, x): |
|
|
|
return self.model(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|