import torch from torch import nn class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class ActivatorGatingUnit(nn.Module): def __init__(self,dim, hidden_dim): super().__init__() self.proj_1 = nn.Linear(dim, hidden_dim) self.proj_2 = nn.Linear(dim, hidden_dim) self.proj_3 = nn.Linear(hidden_dim , dim) self.gelu = nn.GELU() self.norm = nn.LayerNorm(hidden_dim) def forward(self, x): u, v = x, x u = self.proj_1(u) u = self.gelu(u) u = self.norm(u) v = self.proj_2(v) v = self.norm(v) g = u * v out = self.proj_3(g) return out class ActivatorBlock(nn.Module): def __init__(self, d_model, d_ffn,dropout): super().__init__() self.norm = nn.LayerNorm(d_model) self.actgu = ActivatorGatingUnit(d_model, d_ffn) self.ffn = FeedForward(d_model,d_ffn,dropout) def forward(self, x): residual = x x = self.norm(x) x = self.actgu(x) x = x + residual residual = x x = self.norm(x) x = self.ffn(x) out = x + residual return out class ACTIVATOR(nn.Module): def __init__(self, d_model, d_ffn, num_layers,dropout): super().__init__() self.model = nn.Sequential( *[ActivatorBlock(d_model,d_ffn,dropout) for _ in range(num_layers)] ) def forward(self, x): return self.model(x)