Abdullah-Nazhat
commited on
Upload 2 files
Browse files- approximator.py +271 -0
- train.py +195 -0
approximator.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from torch import nn, einsum
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from einops.layers.torch import Rearrange
|
6 |
+
from einops import rearrange, reduce
|
7 |
+
from math import ceil
|
8 |
+
|
9 |
+
|
10 |
+
class FeedForward(nn.Module):
|
11 |
+
def __init__(self, dim, hidden_dim, dropout):
|
12 |
+
super().__init__()
|
13 |
+
self.net = nn.Sequential(
|
14 |
+
nn.Linear(dim, hidden_dim),
|
15 |
+
nn.GELU(),
|
16 |
+
nn.Dropout(dropout),
|
17 |
+
nn.Linear(hidden_dim, dim),
|
18 |
+
nn.Dropout(dropout)
|
19 |
+
)
|
20 |
+
def forward(self, x):
|
21 |
+
return self.net(x)
|
22 |
+
|
23 |
+
|
24 |
+
# helper functions
|
25 |
+
|
26 |
+
def exists(val):
|
27 |
+
return val is not None
|
28 |
+
|
29 |
+
def moore_penrose_iter_pinv(x, iters = 6):
|
30 |
+
device = x.device
|
31 |
+
|
32 |
+
abs_x = torch.abs(x)
|
33 |
+
col = abs_x.sum(dim = -1)
|
34 |
+
row = abs_x.sum(dim = -2)
|
35 |
+
z = rearrange(x, '... i j -> ... j i') / (torch.max(col) * torch.max(row))
|
36 |
+
|
37 |
+
I = torch.eye(x.shape[-1], device = device)
|
38 |
+
I = rearrange(I, 'i j -> () i j')
|
39 |
+
|
40 |
+
for _ in range(iters):
|
41 |
+
xz = x @ z
|
42 |
+
z = 0.25 * z @ (13 * I - (xz @ (15 * I - (xz @ (7 * I - xz)))))
|
43 |
+
|
44 |
+
return z
|
45 |
+
|
46 |
+
# main attention class
|
47 |
+
|
48 |
+
class NystromAttention(nn.Module):
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
dim,
|
52 |
+
dim_head = 64,
|
53 |
+
heads = 8,
|
54 |
+
num_landmarks = 256,
|
55 |
+
pinv_iterations = 6,
|
56 |
+
residual = True,
|
57 |
+
residual_conv_kernel = 33,
|
58 |
+
eps = 1e-8,
|
59 |
+
dropout = 0.
|
60 |
+
):
|
61 |
+
super().__init__()
|
62 |
+
self.eps = eps
|
63 |
+
inner_dim = heads * dim_head
|
64 |
+
|
65 |
+
self.num_landmarks = num_landmarks
|
66 |
+
self.pinv_iterations = pinv_iterations
|
67 |
+
|
68 |
+
self.heads = heads
|
69 |
+
self.scale = dim_head ** -0.5
|
70 |
+
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
71 |
+
|
72 |
+
self.to_out = nn.Sequential(
|
73 |
+
nn.Linear(inner_dim, dim),
|
74 |
+
nn.Dropout(dropout)
|
75 |
+
)
|
76 |
+
|
77 |
+
self.residual = residual
|
78 |
+
if residual:
|
79 |
+
kernel_size = residual_conv_kernel
|
80 |
+
padding = residual_conv_kernel // 2
|
81 |
+
self.res_conv = nn.Conv2d(heads, heads, (kernel_size, 1), padding = (padding, 0), groups = heads, bias = False)
|
82 |
+
|
83 |
+
def forward(self, x, mask = None, return_attn = False):
|
84 |
+
b, n, _, h, m, iters, eps = *x.shape, self.heads, self.num_landmarks, self.pinv_iterations, self.eps
|
85 |
+
|
86 |
+
# pad so that sequence can be evenly divided into m landmarks
|
87 |
+
|
88 |
+
remainder = n % m
|
89 |
+
if remainder > 0:
|
90 |
+
padding = m - (n % m)
|
91 |
+
x = F.pad(x, (0, 0, padding, 0), value = 0)
|
92 |
+
|
93 |
+
if exists(mask):
|
94 |
+
mask = F.pad(mask, (padding, 0), value = False)
|
95 |
+
|
96 |
+
# derive query, keys, values
|
97 |
+
|
98 |
+
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
|
99 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
|
100 |
+
|
101 |
+
# set masked positions to 0 in queries, keys, values
|
102 |
+
|
103 |
+
if exists(mask):
|
104 |
+
mask = rearrange(mask, 'b n -> b () n')
|
105 |
+
q, k, v = map(lambda t: t * mask[..., None], (q, k, v))
|
106 |
+
|
107 |
+
q = q * self.scale
|
108 |
+
|
109 |
+
# generate landmarks by sum reduction, and then calculate mean using the mask
|
110 |
+
|
111 |
+
l = ceil(n / m)
|
112 |
+
landmark_einops_eq = '... (n l) d -> ... n d'
|
113 |
+
q_landmarks = reduce(q, landmark_einops_eq, 'sum', l = l)
|
114 |
+
k_landmarks = reduce(k, landmark_einops_eq, 'sum', l = l)
|
115 |
+
|
116 |
+
# calculate landmark mask, and also get sum of non-masked elements in preparation for masked mean
|
117 |
+
|
118 |
+
divisor = l
|
119 |
+
if exists(mask):
|
120 |
+
mask_landmarks_sum = reduce(mask, '... (n l) -> ... n', 'sum', l = l)
|
121 |
+
divisor = mask_landmarks_sum[..., None] + eps
|
122 |
+
mask_landmarks = mask_landmarks_sum > 0
|
123 |
+
|
124 |
+
# masked mean (if mask exists)
|
125 |
+
|
126 |
+
q_landmarks /= divisor
|
127 |
+
k_landmarks /= divisor
|
128 |
+
|
129 |
+
# similarities
|
130 |
+
|
131 |
+
einops_eq = '... i d, ... j d -> ... i j'
|
132 |
+
sim1 = einsum(einops_eq, q, k_landmarks)
|
133 |
+
sim2 = einsum(einops_eq, q_landmarks, k_landmarks)
|
134 |
+
sim3 = einsum(einops_eq, q_landmarks, k)
|
135 |
+
|
136 |
+
# masking
|
137 |
+
|
138 |
+
if exists(mask):
|
139 |
+
mask_value = -torch.finfo(q.dtype).max
|
140 |
+
sim1.masked_fill_(~(mask[..., None] * mask_landmarks[..., None, :]), mask_value)
|
141 |
+
sim2.masked_fill_(~(mask_landmarks[..., None] * mask_landmarks[..., None, :]), mask_value)
|
142 |
+
sim3.masked_fill_(~(mask_landmarks[..., None] * mask[..., None, :]), mask_value)
|
143 |
+
|
144 |
+
# eq (15) in the paper and aggregate values
|
145 |
+
|
146 |
+
attn1, attn2, attn3 = map(lambda t: t.softmax(dim = -1), (sim1, sim2, sim3))
|
147 |
+
attn2_inv = moore_penrose_iter_pinv(attn2, iters)
|
148 |
+
|
149 |
+
out = (attn1 @ attn2_inv) @ (attn3 @ v)
|
150 |
+
|
151 |
+
# add depth-wise conv residual of values
|
152 |
+
|
153 |
+
if self.residual:
|
154 |
+
out += self.res_conv(v)
|
155 |
+
|
156 |
+
# merge and combine heads
|
157 |
+
|
158 |
+
out = rearrange(out, 'b h n d -> b n (h d)', h = h)
|
159 |
+
out = self.to_out(out)
|
160 |
+
out = out[:, -n:]
|
161 |
+
|
162 |
+
if return_attn:
|
163 |
+
attn = attn1 @ attn2_inv @ attn3
|
164 |
+
return out, attn
|
165 |
+
|
166 |
+
return out
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
class NystromBlock(nn.Module):
|
175 |
+
def __init__(self,dim,dim_ffn, dropout):
|
176 |
+
super().__init__()
|
177 |
+
self.Nystrom = NystromAttention(
|
178 |
+
dim,
|
179 |
+
dim_head = 64,
|
180 |
+
heads = 4,
|
181 |
+
num_landmarks = 32,
|
182 |
+
pinv_iterations = 3,
|
183 |
+
residual = True,
|
184 |
+
residual_conv_kernel = 33,
|
185 |
+
eps = 1e-8,
|
186 |
+
dropout = dropout)
|
187 |
+
self.norm = nn.LayerNorm(dim)
|
188 |
+
|
189 |
+
self.ffn = FeedForward(dim,dim_ffn,dropout)
|
190 |
+
|
191 |
+
def forward(self, x):
|
192 |
+
res = x
|
193 |
+
x = self.norm(x)
|
194 |
+
x = self.Nystrom(x)
|
195 |
+
x = res + x
|
196 |
+
res = x
|
197 |
+
x = self.norm(x)
|
198 |
+
x = self.ffn(x)
|
199 |
+
out = x + res
|
200 |
+
return out
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
class ApproximatorGatingUnit(nn.Module):
|
206 |
+
def __init__(self,d_model,d_ffn,dropout):
|
207 |
+
super().__init__()
|
208 |
+
#self.proj = nn.Linear(d_model, d_model)
|
209 |
+
self.Approx_1 = NystromBlock(d_model,d_ffn,dropout)
|
210 |
+
self.Approx_2 = NystromBlock(d_model,d_ffn,dropout)
|
211 |
+
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
def forward(self, x):
|
216 |
+
u, v = x, x
|
217 |
+
u = self.Approx_1(u)
|
218 |
+
v = self.Approx_2(v)
|
219 |
+
out = u * v
|
220 |
+
return out
|
221 |
+
|
222 |
+
|
223 |
+
class ApproximatorBlock(nn.Module):
|
224 |
+
def __init__(self, d_model, d_ffn,dropout):
|
225 |
+
super().__init__()
|
226 |
+
|
227 |
+
self.norm = nn.LayerNorm(d_model)
|
228 |
+
self.agu = ApproximatorGatingUnit(d_model,d_ffn,dropout)
|
229 |
+
self.ffn = FeedForward(d_model,d_ffn,dropout)
|
230 |
+
def forward(self, x):
|
231 |
+
residual = x
|
232 |
+
x = self.norm(x)
|
233 |
+
x = self.agu(x)
|
234 |
+
x = x + residual
|
235 |
+
residual = x
|
236 |
+
x = self.norm(x)
|
237 |
+
x = self.ffn(x)
|
238 |
+
out = x + residual
|
239 |
+
return out
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
class Approximator(nn.Module):
|
250 |
+
def __init__(self, d_model, d_ffn, num_layers,dropout):
|
251 |
+
super().__init__()
|
252 |
+
|
253 |
+
self.model = nn.Sequential(
|
254 |
+
|
255 |
+
*[ApproximatorBlock(d_model,d_ffn,dropout) for _ in range(num_layers)],
|
256 |
+
|
257 |
+
|
258 |
+
)
|
259 |
+
|
260 |
+
def forward(self, x):
|
261 |
+
|
262 |
+
x = self.model(x)
|
263 |
+
|
264 |
+
return x
|
265 |
+
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
|
train.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#imports
|
2 |
+
|
3 |
+
import os
|
4 |
+
import csv
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
from torchvision import datasets
|
9 |
+
from torchvision.transforms import ToTensor, Normalize, RandomCrop, RandomHorizontalFlip, Compose
|
10 |
+
from approximator import Approximator
|
11 |
+
|
12 |
+
# data transforms
|
13 |
+
|
14 |
+
transform = Compose([
|
15 |
+
RandomCrop(32, padding=4),
|
16 |
+
RandomHorizontalFlip(),
|
17 |
+
ToTensor(),
|
18 |
+
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
19 |
+
|
20 |
+
])
|
21 |
+
|
22 |
+
training_data = datasets.CIFAR10(
|
23 |
+
root='data',
|
24 |
+
train=True,
|
25 |
+
download=True,
|
26 |
+
transform=transform
|
27 |
+
)
|
28 |
+
|
29 |
+
test_data = datasets.CIFAR10(
|
30 |
+
root='data',
|
31 |
+
train=False,
|
32 |
+
download=True,
|
33 |
+
transform=transform
|
34 |
+
)
|
35 |
+
# create dataloaders
|
36 |
+
|
37 |
+
batch_size = 128
|
38 |
+
|
39 |
+
train_dataloader = DataLoader(training_data, batch_size=batch_size,shuffle=True)
|
40 |
+
test_dataloader = DataLoader(test_data, batch_size=batch_size)
|
41 |
+
|
42 |
+
|
43 |
+
for X, y in test_dataloader:
|
44 |
+
print(f"Shape of X [N,C,H,W]:{X.shape}")
|
45 |
+
print(f"Shape of y:{y.shape}{y.dtype}")
|
46 |
+
break
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
# size checking for loading images
|
51 |
+
def check_sizes(image_size, patch_size):
|
52 |
+
sqrt_num_patches, remainder = divmod(image_size, patch_size)
|
53 |
+
assert remainder == 0, "`image_size` must be divisibe by `patch_size`"
|
54 |
+
num_patches = sqrt_num_patches ** 2
|
55 |
+
return num_patches
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
# create model
|
60 |
+
# Get cpu or gpu device for training.
|
61 |
+
|
62 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
63 |
+
print(f"using {device} device")
|
64 |
+
|
65 |
+
# model definition
|
66 |
+
|
67 |
+
class ApproximatorImageClassification(Approximator):
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
image_size=32,
|
71 |
+
patch_size=4,
|
72 |
+
in_channels=3,
|
73 |
+
num_classes=10,
|
74 |
+
d_model=256,
|
75 |
+
d_ffn=512,
|
76 |
+
num_layers=4,
|
77 |
+
dropout=0.5
|
78 |
+
):
|
79 |
+
num_patches = check_sizes(image_size, patch_size)
|
80 |
+
super().__init__(d_model, d_ffn, num_layers,dropout)
|
81 |
+
self.patcher = nn.Conv2d(
|
82 |
+
in_channels, d_model, kernel_size=patch_size, stride=patch_size
|
83 |
+
)
|
84 |
+
self.classifier = nn.Linear(d_model, num_classes)
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
|
88 |
+
patches = self.patcher(x)
|
89 |
+
batch_size, num_channels, _, _ = patches.shape
|
90 |
+
patches = patches.permute(0, 2, 3, 1)
|
91 |
+
patches = patches.view(batch_size, -1, num_channels)
|
92 |
+
embedding = self.model(patches)
|
93 |
+
embedding = embedding.mean(dim=1) # global average pooling
|
94 |
+
out = self.classifier(embedding)
|
95 |
+
return out
|
96 |
+
|
97 |
+
model = ApproximatorImageClassification().to(device)
|
98 |
+
print(model)
|
99 |
+
|
100 |
+
# Optimizer
|
101 |
+
|
102 |
+
loss_fn = nn.CrossEntropyLoss()
|
103 |
+
optimizer = torch.optim.Adam(model.parameters(),lr=1e-3)
|
104 |
+
|
105 |
+
|
106 |
+
# Training Loop
|
107 |
+
|
108 |
+
def train(dataloader, model, loss_fn, optimizer):
|
109 |
+
size = len(dataloader.dataset)
|
110 |
+
num_batches = len(dataloader)
|
111 |
+
model.train()
|
112 |
+
train_loss = 0
|
113 |
+
correct = 0
|
114 |
+
for batch, (X,y) in enumerate(dataloader):
|
115 |
+
X, y = X.to(device), y.to(device)
|
116 |
+
|
117 |
+
#compute prediction error
|
118 |
+
pred = model(X)
|
119 |
+
loss = loss_fn(pred,y)
|
120 |
+
|
121 |
+
# backpropagation
|
122 |
+
optimizer.zero_grad()
|
123 |
+
loss.backward()
|
124 |
+
optimizer.step()
|
125 |
+
train_loss += loss.item()
|
126 |
+
_, labels = torch.max(pred.data, 1)
|
127 |
+
correct += labels.eq(y.data).type(torch.float).sum()
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
if batch % 100 == 0:
|
133 |
+
loss, current = loss.item(), batch * len(X)
|
134 |
+
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
|
135 |
+
|
136 |
+
train_loss /= num_batches
|
137 |
+
train_accuracy = 100. * correct.item() / size
|
138 |
+
print(train_accuracy)
|
139 |
+
return train_loss,train_accuracy
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
# Test loop
|
144 |
+
|
145 |
+
def test(dataloader, model, loss_fn):
|
146 |
+
size = len(dataloader.dataset)
|
147 |
+
num_batches = len(dataloader)
|
148 |
+
model.eval()
|
149 |
+
test_loss = 0
|
150 |
+
correct = 0
|
151 |
+
with torch.no_grad():
|
152 |
+
for X,y in dataloader:
|
153 |
+
X,y = X.to(device), y.to(device)
|
154 |
+
pred = model(X)
|
155 |
+
test_loss += loss_fn(pred, y).item()
|
156 |
+
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
|
157 |
+
test_loss /= num_batches
|
158 |
+
correct /= size
|
159 |
+
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
|
160 |
+
test_accuracy = 100*correct
|
161 |
+
return test_loss, test_accuracy
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
# apply train and test
|
166 |
+
|
167 |
+
logname = "/home/abdullah/Desktop/Proposals_experiments/Approximator/Experiments_cifar10/logs_approximator/logs_cifar10.csv"
|
168 |
+
if not os.path.exists(logname):
|
169 |
+
with open(logname, 'w') as logfile:
|
170 |
+
logwriter = csv.writer(logfile, delimiter=',')
|
171 |
+
logwriter.writerow(['epoch', 'train loss', 'train acc',
|
172 |
+
'test loss', 'test acc'])
|
173 |
+
|
174 |
+
|
175 |
+
epochs = 100
|
176 |
+
for epoch in range(epochs):
|
177 |
+
print(f"Epoch {epoch+1}\n-----------------------------------")
|
178 |
+
train_loss, train_acc = train(train_dataloader, model, loss_fn, optimizer)
|
179 |
+
# learning rate scheduler
|
180 |
+
#if scheduler is not None:
|
181 |
+
# scheduler.step()
|
182 |
+
test_loss, test_acc = test(test_dataloader, model, loss_fn)
|
183 |
+
with open(logname, 'a') as logfile:
|
184 |
+
logwriter = csv.writer(logfile, delimiter=',')
|
185 |
+
logwriter.writerow([epoch+1, train_loss, train_acc,
|
186 |
+
test_loss, test_acc])
|
187 |
+
print("Done!")
|
188 |
+
|
189 |
+
# saving trained model
|
190 |
+
|
191 |
+
path = "/home/abdullah/Desktop/Proposals_experiments/Approximator/Experiments_cifar10/weights_approximator"
|
192 |
+
model_name = "ApproximatorImageClassification_cifar10"
|
193 |
+
torch.save(model.state_dict(), f"{path}/{model_name}.pth")
|
194 |
+
print(f"Saved Model State to {path}/{model_name}.pth ")
|
195 |
+
|