|
import torch |
|
import numpy as np |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from einops.layers.torch import Rearrange |
|
from aft_pytorch import AFTFull |
|
|
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, hidden_dim, dropout): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.Linear(dim, hidden_dim), |
|
nn.GELU(), |
|
nn.Dropout(dropout), |
|
nn.Linear(hidden_dim, dim), |
|
nn.Dropout(dropout) |
|
) |
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
class AFTBlock(nn.Module): |
|
def __init__(self,dim,dim_ffn, dropout): |
|
super().__init__() |
|
self.AFT = AFTFull( |
|
max_seqlen=512, |
|
dim=dim, |
|
hidden_dim=dim |
|
) |
|
self.norm = nn.LayerNorm(dim) |
|
|
|
self.ffn = FeedForward(dim,dim_ffn,dropout) |
|
|
|
def forward(self, x): |
|
res = x |
|
x = self.norm(x) |
|
x = self.AFT(x) |
|
x = res + x |
|
res = x |
|
x = self.norm(x) |
|
x = self.ffn(x) |
|
out = x + res |
|
return out |
|
|
|
|
|
|
|
class AFTGatingUnit(nn.Module): |
|
def __init__(self,d_model,d_ffn,dropout): |
|
super().__init__() |
|
self.aft_1 = AFTBlock(d_model,d_ffn,dropout) |
|
self.aft_2 = AFTBlock(d_model,d_ffn,dropout) |
|
|
|
|
|
|
|
def forward(self, x): |
|
u, v = x, x |
|
u = self.aft_1(u) |
|
v = self.aft_2(v) |
|
out = u * v |
|
return out |
|
|
|
|
|
class AverageBlock(nn.Module): |
|
def __init__(self, d_model, d_ffn,dropout): |
|
super().__init__() |
|
|
|
self.norm = nn.LayerNorm(d_model) |
|
self.fgu = AFTGatingUnit(d_model,d_ffn,dropout) |
|
self.ffn = FeedForward(d_model,d_ffn,dropout) |
|
def forward(self, x): |
|
residual = x |
|
x = self.norm(x) |
|
x = self.fgu(x) |
|
x = x + residual |
|
residual = x |
|
x = self.norm(x) |
|
x = self.ffn(x) |
|
out = x + residual |
|
return out |
|
|
|
|
|
|
|
class Averageformer(nn.Module): |
|
def __init__(self, d_model, d_ffn, num_layers,dropout): |
|
super().__init__() |
|
|
|
self.model = nn.Sequential( |
|
*[AverageBlock(d_model,d_ffn,dropout) for _ in range(num_layers)] |
|
) |
|
|
|
def forward(self, x): |
|
|
|
return self.model(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|