Averageformer / averageformer.py
Abdullah-Nazhat's picture
Upload 2 files
6ec21ae verified
import torch
import numpy as np
from torch import nn
from torch.nn import functional as F
from einops.layers.torch import Rearrange
from aft_pytorch import AFTFull
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class AFTBlock(nn.Module):
def __init__(self,dim,dim_ffn, dropout):
super().__init__()
self.AFT = AFTFull(
max_seqlen=512,
dim=dim,
hidden_dim=dim
)
self.norm = nn.LayerNorm(dim)
self.ffn = FeedForward(dim,dim_ffn,dropout)
def forward(self, x):
res = x
x = self.norm(x)
x = self.AFT(x)
x = res + x
res = x
x = self.norm(x)
x = self.ffn(x)
out = x + res
return out
class AFTGatingUnit(nn.Module):
def __init__(self,d_model,d_ffn,dropout):
super().__init__()
self.aft_1 = AFTBlock(d_model,d_ffn,dropout)
self.aft_2 = AFTBlock(d_model,d_ffn,dropout)
def forward(self, x):
u, v = x, x
u = self.aft_1(u)
v = self.aft_2(v)
out = u * v
return out
class AverageBlock(nn.Module):
def __init__(self, d_model, d_ffn,dropout):
super().__init__()
self.norm = nn.LayerNorm(d_model)
self.fgu = AFTGatingUnit(d_model,d_ffn,dropout)
self.ffn = FeedForward(d_model,d_ffn,dropout)
def forward(self, x):
residual = x
x = self.norm(x)
x = self.fgu(x)
x = x + residual
residual = x
x = self.norm(x)
x = self.ffn(x)
out = x + residual
return out
class Averageformer(nn.Module):
def __init__(self, d_model, d_ffn, num_layers,dropout):
super().__init__()
self.model = nn.Sequential(
*[AverageBlock(d_model,d_ffn,dropout) for _ in range(num_layers)]
)
def forward(self, x):
return self.model(x)