Abdullah-Nazhat commited on
Commit
f4e579f
·
verified ·
1 Parent(s): 3d9c513

Upload 8 files

Browse files
contextualizer.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+
6
+
7
+
8
+ class FeedForward(nn.Module):
9
+ def __init__(self, dim, hidden_dim, dropout):
10
+ super().__init__()
11
+ self.net = nn.Sequential(
12
+ nn.Linear(dim, hidden_dim),
13
+ nn.GELU(),
14
+ nn.Dropout(dropout),
15
+ nn.Linear(hidden_dim, dim),
16
+ nn.Dropout(dropout)
17
+ )
18
+ def forward(self, x):
19
+ return self.net(x)
20
+
21
+
22
+
23
+
24
+
25
+
26
+
27
+
28
+
29
+ class ContextualizerBlock(nn.Module):
30
+ def __init__(self, d_model,d_ffn,dropout,num_tokens):
31
+ super().__init__()
32
+
33
+ self.context_proj = nn.Linear(d_model,d_model)
34
+ self.mlp = FeedForward(d_model,d_ffn,dropout)
35
+ self.norm = nn.LayerNorm(d_model)
36
+ self.upsample = nn.Upsample(scale_factor=num_tokens,mode='nearest')
37
+ self.downsample = nn.Upsample(scale_factor= 1/num_tokens, mode='nearest')
38
+ def forward(self, x):
39
+ res = x
40
+ x = self.norm(x)
41
+
42
+ context = x
43
+ dim0 = context.shape[0]
44
+ dim1 = context.shape[1]
45
+ dim2 = context.shape[2]
46
+ context = context.reshape([dim0,1,dim1*dim2])
47
+
48
+ context = self.downsample(context)
49
+ context = context.reshape([dim0,dim2])
50
+ context = self.context_proj(context)
51
+
52
+ context = context.reshape([dim0,1,dim2])
53
+ context = self.upsample(context)
54
+ context = context.reshape([dim0,dim1,dim2])
55
+ x = context
56
+ x = x + res
57
+ res = x
58
+ x = self.norm(x)
59
+ x = self.mlp(x)
60
+ out = x + res
61
+ return out
62
+ return
63
+
64
+ class Contextualizer(nn.Module):
65
+ def __init__(self, d_model, d_ffn, num_layers,dropout,num_tokens):
66
+ super().__init__()
67
+
68
+ self.model = nn.Sequential(
69
+
70
+ *[ContextualizerBlock(d_model,d_ffn,dropout,num_tokens) for _ in range(num_layers)],
71
+
72
+
73
+ )
74
+
75
+ def forward(self, x):
76
+
77
+ x = self.model(x)
78
+
79
+ return x
80
+
81
+
82
+
83
+
84
+
85
+
86
+
87
+
88
+
89
+
90
+
91
+
92
+
93
+
contextualizer_mlp.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+
6
+
7
+
8
+ class FeedForward(nn.Module):
9
+ def __init__(self, dim, hidden_dim, dropout):
10
+ super().__init__()
11
+ self.net = nn.Sequential(
12
+ nn.Linear(dim, hidden_dim),
13
+ nn.GELU(),
14
+ nn.Dropout(dropout),
15
+ nn.Linear(hidden_dim, dim),
16
+ nn.Dropout(dropout)
17
+ )
18
+ def forward(self, x):
19
+ return self.net(x)
20
+
21
+
22
+
23
+
24
+
25
+
26
+
27
+
28
+
29
+ class ContextualizerBlock(nn.Module):
30
+ def __init__(self, d_model,d_ffn,dropout,num_tokens):
31
+ super().__init__()
32
+
33
+ self.context_mlp = FeedForward(d_model,d_ffn,dropout)
34
+ self.mlp = FeedForward(d_model,d_ffn,dropout)
35
+ self.norm = nn.LayerNorm(d_model)
36
+ self.upsample = nn.Upsample(scale_factor=num_tokens,mode='nearest')
37
+ self.downsample = nn.Upsample(scale_factor= 1/num_tokens, mode='nearest')
38
+ def forward(self, x):
39
+ res = x
40
+ x = self.norm(x)
41
+
42
+ context = x
43
+ dim0 = context.shape[0]
44
+ dim1 = context.shape[1]
45
+ dim2 = context.shape[2]
46
+ context = context.reshape([dim0,1,dim1*dim2])
47
+
48
+ context = self.downsample(context)
49
+ context = context.reshape([dim0,dim2])
50
+ context = self.context_mlp(context)
51
+
52
+ context = context.reshape([dim0,1,dim2])
53
+ context = self.upsample(context)
54
+ context = context.reshape([dim0,dim1,dim2])
55
+ x = context
56
+ x = x + res
57
+ res = x
58
+ x = self.norm(x)
59
+ x = self.mlp(x)
60
+ out = x + res
61
+ return out
62
+ return
63
+
64
+ class Contextualizer(nn.Module):
65
+ def __init__(self, d_model, d_ffn, num_layers,dropout,num_tokens):
66
+ super().__init__()
67
+
68
+ self.model = nn.Sequential(
69
+
70
+ *[ContextualizerBlock(d_model,d_ffn,dropout,num_tokens) for _ in range(num_layers)],
71
+
72
+
73
+ )
74
+
75
+ def forward(self, x):
76
+
77
+ x = self.model(x)
78
+
79
+ return x
80
+
81
+
82
+
83
+
84
+
85
+
86
+
87
+
88
+
89
+
90
+
91
+
92
+
93
+
contextualizer_mlp_nin.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+
6
+
7
+
8
+ class FeedForward(nn.Module):
9
+ def __init__(self, dim, hidden_dim, dropout):
10
+ super().__init__()
11
+ self.net = nn.Sequential(
12
+ nn.Linear(dim, hidden_dim),
13
+ nn.GELU(),
14
+ nn.Dropout(dropout),
15
+ nn.Linear(hidden_dim, dim),
16
+ nn.Dropout(dropout)
17
+ )
18
+ def forward(self, x):
19
+ return self.net(x)
20
+
21
+
22
+
23
+
24
+
25
+
26
+
27
+
28
+
29
+ class ContextualizerBlock(nn.Module):
30
+ def __init__(self, d_model,d_ffn,dropout,num_tokens):
31
+ super().__init__()
32
+
33
+ self.context_mlp = FeedForward(d_model,d_ffn,dropout)
34
+ self.mlp = FeedForward(d_model,d_ffn,dropout)
35
+ self.norm = nn.LayerNorm(d_model)
36
+ self.upsample = nn.Upsample(scale_factor=num_tokens,mode='nearest')
37
+ self.downsample = nn.Upsample(scale_factor= 1/num_tokens, mode='nearest')
38
+ def forward(self, x):
39
+ res = x
40
+ x = self.norm(x)
41
+
42
+ context = x
43
+ dim0 = context.shape[0]
44
+ dim1 = context.shape[1]
45
+ dim2 = context.shape[2]
46
+ context = context.reshape([dim0,1,dim1*dim2])
47
+
48
+ context = self.downsample(context)
49
+ context = context.reshape([dim0,dim2])
50
+ context = self.context_mlp(context)
51
+
52
+ context = context.reshape([dim0,1,dim2])
53
+ context = self.upsample(context)
54
+ context = context.reshape([dim0,dim1,dim2])
55
+ x = context
56
+ x = x + res
57
+ res = x
58
+ x = self.norm(x)
59
+ x = self.mlp(x)
60
+ out = x + res
61
+ return out
62
+ return
63
+
64
+
65
+ class MixerGatingUnit(nn.Module):
66
+ def __init__(self,d_model,d_ffn,dropout,num_tokens):
67
+ super().__init__()
68
+ self.Mixer = ContextualizerBlock(d_model,d_ffn,dropout,num_tokens)
69
+ self.proj = nn.Linear(d_model,d_model)
70
+
71
+ def forward(self, x):
72
+ u, v = x, x
73
+ u = self.proj(u)
74
+ v = self.Mixer(v)
75
+ out = u * v
76
+ return out
77
+
78
+
79
+ class ContextualizerNiNBlock(nn.Module):
80
+ def __init__(self, d_model,d_ffn,dropout,num_tokens):
81
+ super().__init__()
82
+
83
+ self.norm = nn.LayerNorm(d_model)
84
+ self.mgu = MixerGatingUnit(d_model,d_ffn,dropout,num_tokens)
85
+ self.ffn = FeedForward(d_model,d_ffn,dropout)
86
+ def forward(self, x):
87
+ residual = x
88
+ x = self.norm(x)
89
+ x = self.mgu(x)
90
+ x = x + residual
91
+ residual = x
92
+ x = self.norm(x)
93
+ x = self.ffn(x)
94
+ out = x + residual
95
+ return out
96
+
97
+ class ContextualizerNiN(nn.Module):
98
+ def __init__(self, d_model, d_ffn, num_layers,dropout,num_tokens):
99
+ super().__init__()
100
+
101
+ self.model = nn.Sequential(
102
+
103
+ *[ContextualizerNiNBlock(d_model,d_ffn,dropout,num_tokens) for _ in range(num_layers)],
104
+
105
+
106
+ )
107
+
108
+ def forward(self, x):
109
+
110
+ x = self.model(x)
111
+
112
+ return x
113
+
114
+
115
+
116
+
117
+
118
+
119
+
120
+
121
+
122
+
123
+
124
+
125
+
126
+
contextualizer_nin.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+
6
+
7
+
8
+ class FeedForward(nn.Module):
9
+ def __init__(self, dim, hidden_dim, dropout):
10
+ super().__init__()
11
+ self.net = nn.Sequential(
12
+ nn.Linear(dim, hidden_dim),
13
+ nn.GELU(),
14
+ nn.Dropout(dropout),
15
+ nn.Linear(hidden_dim, dim),
16
+ nn.Dropout(dropout)
17
+ )
18
+ def forward(self, x):
19
+ return self.net(x)
20
+
21
+
22
+
23
+
24
+
25
+
26
+
27
+
28
+
29
+ class ContextualizerBlock(nn.Module):
30
+ def __init__(self, d_model,d_ffn,dropout,num_tokens):
31
+ super().__init__()
32
+
33
+ self.context_proj = nn.Linear(d_model,d_model)
34
+ self.mlp = FeedForward(d_model,d_ffn,dropout)
35
+ self.norm = nn.LayerNorm(d_model)
36
+ self.upsample = nn.Upsample(scale_factor=num_tokens,mode='nearest')
37
+ self.downsample = nn.Upsample(scale_factor= 1/num_tokens, mode='nearest')
38
+ def forward(self, x):
39
+ res = x
40
+ x = self.norm(x)
41
+
42
+ context = x
43
+ dim0 = context.shape[0]
44
+ dim1 = context.shape[1]
45
+ dim2 = context.shape[2]
46
+ context = context.reshape([dim0,1,dim1*dim2])
47
+
48
+ context = self.downsample(context)
49
+ context = context.reshape([dim0,dim2])
50
+ context = self.context_proj(context)
51
+
52
+ context = context.reshape([dim0,1,dim2])
53
+ context = self.upsample(context)
54
+ context = context.reshape([dim0,dim1,dim2])
55
+ x = context
56
+ x = x + res
57
+ res = x
58
+ x = self.norm(x)
59
+ x = self.mlp(x)
60
+ out = x + res
61
+ return out
62
+ return
63
+
64
+
65
+ class MixerGatingUnit(nn.Module):
66
+ def __init__(self,d_model,d_ffn,dropout,num_tokens):
67
+ super().__init__()
68
+ self.Mixer = ContextualizerBlock(d_model,d_ffn,dropout,num_tokens)
69
+ self.proj = nn.Linear(d_model,d_model)
70
+
71
+ def forward(self, x):
72
+ u, v = x, x
73
+ u = self.proj(u)
74
+ v = self.Mixer(v)
75
+ out = u * v
76
+ return out
77
+
78
+
79
+ class ContextualizerNiNBlock(nn.Module):
80
+ def __init__(self, d_model,d_ffn,dropout,num_tokens):
81
+ super().__init__()
82
+
83
+ self.norm = nn.LayerNorm(d_model)
84
+ self.mgu = MixerGatingUnit(d_model,d_ffn,dropout,num_tokens)
85
+ self.ffn = FeedForward(d_model,d_ffn,dropout)
86
+ def forward(self, x):
87
+ residual = x
88
+ x = self.norm(x)
89
+ x = self.mgu(x)
90
+ x = x + residual
91
+ residual = x
92
+ x = self.norm(x)
93
+ x = self.ffn(x)
94
+ out = x + residual
95
+ return out
96
+
97
+ class ContextualizerNiN(nn.Module):
98
+ def __init__(self, d_model, d_ffn, num_layers,dropout,num_tokens):
99
+ super().__init__()
100
+
101
+ self.model = nn.Sequential(
102
+
103
+ *[ContextualizerNiNBlock(d_model,d_ffn,dropout,num_tokens) for _ in range(num_layers)],
104
+
105
+
106
+ )
107
+
108
+ def forward(self, x):
109
+
110
+ x = self.model(x)
111
+
112
+ return x
113
+
114
+
115
+
116
+
117
+
118
+
119
+
120
+
121
+
122
+
123
+
124
+
125
+
126
+
train.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #imports
2
+
3
+ import os
4
+ import csv
5
+ import torch
6
+ from torch import nn
7
+ from torch.utils.data import DataLoader
8
+ from torchvision import datasets
9
+ from torchvision.transforms import ToTensor, Normalize, RandomCrop, RandomHorizontalFlip, Compose
10
+ from contextualizer import Contextualizer
11
+
12
+ # data transforms
13
+
14
+ transform = Compose([
15
+ RandomCrop(32, padding=4),
16
+ RandomHorizontalFlip(),
17
+ ToTensor(),
18
+ Normalize((0.5, 0.5,0.5),(0.5, 0.5,0.5))
19
+
20
+ ])
21
+
22
+ training_data = datasets.CIFAR10(
23
+ root='data',
24
+ train=True,
25
+ download=True,
26
+ transform=transform
27
+ )
28
+
29
+ test_data = datasets.CIFAR10(
30
+ root='data',
31
+ train=False,
32
+ download=True,
33
+ transform=transform
34
+ )
35
+ # create dataloaders
36
+
37
+ batch_size = 128
38
+
39
+ train_dataloader = DataLoader(training_data, batch_size=batch_size,shuffle=True)
40
+ test_dataloader = DataLoader(test_data, batch_size=batch_size)
41
+
42
+
43
+ for X, y in test_dataloader:
44
+ print(f"Shape of X [N,C,H,W]:{X.shape}")
45
+ print(f"Shape of y:{y.shape}{y.dtype}")
46
+ break
47
+
48
+ # size checking for loading images
49
+ def check_sizes(image_size, patch_size):
50
+ sqrt_num_patches, remainder = divmod(image_size, patch_size)
51
+ assert remainder == 0, "`image_size` must be divisibe by `patch_size`"
52
+ num_patches = sqrt_num_patches ** 2
53
+ return num_patches
54
+
55
+
56
+
57
+ # create model
58
+ # Get cpu or gpu device for training.
59
+ device = "cuda" if torch.cuda.is_available() else "cpu"
60
+
61
+ print(f"using {device} device")
62
+
63
+ # model definition
64
+
65
+ class ContextualizerImageClassification(Contextualizer):
66
+ def __init__(
67
+ self,
68
+ image_size=32,
69
+ patch_size=4,
70
+ in_channels=3,
71
+ num_classes=10,
72
+ d_ffn=512,
73
+ d_model = 256,
74
+ num_tokens = 64,
75
+ num_layers=4,
76
+ dropout=0.5
77
+ ):
78
+ num_patches = check_sizes(image_size, patch_size)
79
+ super().__init__(d_model,d_ffn,num_layers,dropout, num_tokens)
80
+ self.patcher = nn.Conv2d(
81
+ in_channels, d_model, kernel_size=patch_size, stride=patch_size
82
+ )
83
+ self.classifier = nn.Linear(d_model, num_classes)
84
+
85
+ def forward(self, x):
86
+
87
+ patches = self.patcher(x)
88
+ batch_size, num_channels, _, _ = patches.shape
89
+ patches = patches.permute(0, 2, 3, 1)
90
+ patches = patches.view(batch_size, -1, num_channels)
91
+ embedding = self.model(patches)
92
+ embedding = embedding.mean(dim=1) # global average pooling
93
+ out = self.classifier(embedding)
94
+ return out
95
+
96
+ model = ContextualizerImageClassification().to(device)
97
+ print(model)
98
+
99
+ # Optimizer
100
+
101
+ loss_fn = nn.CrossEntropyLoss()
102
+ optimizer = torch.optim.Adam(model.parameters(),lr=1e-3)
103
+
104
+
105
+ # Training Loop
106
+
107
+ def train(dataloader, model, loss_fn, optimizer):
108
+ size = len(dataloader.dataset)
109
+ num_batches = len(dataloader)
110
+ model.train()
111
+ train_loss = 0
112
+ correct = 0
113
+ for batch, (X,y) in enumerate(dataloader):
114
+ X, y = X.to(device), y.to(device)
115
+
116
+ #compute prediction error
117
+ pred = model(X)
118
+ loss = loss_fn(pred,y)
119
+
120
+ # backpropagation
121
+ optimizer.zero_grad()
122
+ loss.backward()
123
+ optimizer.step()
124
+ train_loss += loss.item()
125
+ _, labels = torch.max(pred.data, 1)
126
+ correct += labels.eq(y.data).type(torch.float).sum()
127
+
128
+
129
+
130
+
131
+ if batch % 100 == 0:
132
+ loss, current = loss.item(), batch * len(X)
133
+ print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
134
+
135
+ train_loss /= num_batches
136
+ train_accuracy = 100. * correct.item() / size
137
+ print(train_accuracy)
138
+ return train_loss,train_accuracy
139
+
140
+
141
+
142
+ # Test loop
143
+
144
+ def test(dataloader, model, loss_fn):
145
+ size = len(dataloader.dataset)
146
+ num_batches = len(dataloader)
147
+ model.eval()
148
+ test_loss = 0
149
+ correct = 0
150
+ with torch.no_grad():
151
+ for X,y in dataloader:
152
+ X,y = X.to(device), y.to(device)
153
+ pred = model(X)
154
+ test_loss += loss_fn(pred, y).item()
155
+ correct += (pred.argmax(1) == y).type(torch.float).sum().item()
156
+ test_loss /= num_batches
157
+ correct /= size
158
+ print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
159
+ test_accuracy = 100*correct
160
+ return test_loss, test_accuracy
161
+
162
+
163
+
164
+ # apply train and test
165
+
166
+ logname = "/PATH/Contextualizer/Experiments_cifar10/logs_contextualizer/logs_cifar10.csv"
167
+ if not os.path.exists(logname):
168
+ with open(logname, 'w') as logfile:
169
+ logwriter = csv.writer(logfile, delimiter=',')
170
+ logwriter.writerow(['epoch', 'train loss', 'train acc',
171
+ 'test loss', 'test acc'])
172
+
173
+
174
+ epochs = 100
175
+ for epoch in range(epochs):
176
+ print(f"Epoch {epoch+1}\n-----------------------------------")
177
+ train_loss, train_acc = train(train_dataloader, model, loss_fn, optimizer)
178
+ # learning rate scheduler
179
+ #if scheduler is not None:
180
+ # scheduler.step()
181
+ test_loss, test_acc = test(test_dataloader, model, loss_fn)
182
+ with open(logname, 'a') as logfile:
183
+ logwriter = csv.writer(logfile, delimiter=',')
184
+ logwriter.writerow([epoch+1, train_loss, train_acc,
185
+ test_loss, test_acc])
186
+ print("Done!")
187
+
188
+ # saving trained model
189
+
190
+ path = "/PATH/Contextualizer/Experiments_cifar10/weights_contextualizer"
191
+ model_name = "ContextualizerImageClassification_cifar10"
192
+ torch.save(model.state_dict(), f"{path}/{model_name}.pth")
193
+ print(f"Saved Model State to {path}/{model_name}.pth ")
194
+
train_mlp.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #imports
2
+
3
+ import os
4
+ import csv
5
+ import torch
6
+ from torch import nn
7
+ from torch.utils.data import DataLoader
8
+ from torchvision import datasets
9
+ from torchvision.transforms import ToTensor, Normalize, RandomCrop, RandomHorizontalFlip, Compose
10
+ from contextualizer_mlp import Contextualizer
11
+
12
+ # data transforms
13
+
14
+ transform = Compose([
15
+ RandomCrop(32, padding=4),
16
+ RandomHorizontalFlip(),
17
+ ToTensor(),
18
+ Normalize((0.5, 0.5,0.5),(0.5, 0.5,0.5))
19
+
20
+ ])
21
+
22
+ training_data = datasets.CIFAR10(
23
+ root='data',
24
+ train=True,
25
+ download=True,
26
+ transform=transform
27
+ )
28
+
29
+ test_data = datasets.CIFAR10(
30
+ root='data',
31
+ train=False,
32
+ download=True,
33
+ transform=transform
34
+ )
35
+ # create dataloaders
36
+
37
+ batch_size = 128
38
+
39
+ train_dataloader = DataLoader(training_data, batch_size=batch_size,shuffle=True)
40
+ test_dataloader = DataLoader(test_data, batch_size=batch_size)
41
+
42
+
43
+ for X, y in test_dataloader:
44
+ print(f"Shape of X [N,C,H,W]:{X.shape}")
45
+ print(f"Shape of y:{y.shape}{y.dtype}")
46
+ break
47
+
48
+ # size checking for loading images
49
+ def check_sizes(image_size, patch_size):
50
+ sqrt_num_patches, remainder = divmod(image_size, patch_size)
51
+ assert remainder == 0, "`image_size` must be divisibe by `patch_size`"
52
+ num_patches = sqrt_num_patches ** 2
53
+ return num_patches
54
+
55
+
56
+
57
+ # create model
58
+ # Get cpu or gpu device for training.
59
+ device = "cuda" if torch.cuda.is_available() else "cpu"
60
+
61
+ print(f"using {device} device")
62
+
63
+ # model definition
64
+
65
+ class ContextualizerImageClassification(Contextualizer):
66
+ def __init__(
67
+ self,
68
+ image_size=32,
69
+ patch_size=4,
70
+ in_channels=3,
71
+ num_classes=10,
72
+ d_ffn=512,
73
+ d_model = 256,
74
+ num_tokens = 64,
75
+ num_layers=4,
76
+ dropout=0.5
77
+ ):
78
+ num_patches = check_sizes(image_size, patch_size)
79
+ super().__init__(d_model,d_ffn,num_layers,dropout, num_tokens)
80
+ self.patcher = nn.Conv2d(
81
+ in_channels, d_model, kernel_size=patch_size, stride=patch_size
82
+ )
83
+ self.classifier = nn.Linear(d_model, num_classes)
84
+
85
+ def forward(self, x):
86
+
87
+ patches = self.patcher(x)
88
+ batch_size, num_channels, _, _ = patches.shape
89
+ patches = patches.permute(0, 2, 3, 1)
90
+ patches = patches.view(batch_size, -1, num_channels)
91
+ embedding = self.model(patches)
92
+ embedding = embedding.mean(dim=1) # global average pooling
93
+ out = self.classifier(embedding)
94
+ return out
95
+
96
+ model = ContextualizerImageClassification().to(device)
97
+ print(model)
98
+
99
+ # Optimizer
100
+
101
+ loss_fn = nn.CrossEntropyLoss()
102
+ optimizer = torch.optim.Adam(model.parameters(),lr=1e-3)
103
+
104
+
105
+ # Training Loop
106
+
107
+ def train(dataloader, model, loss_fn, optimizer):
108
+ size = len(dataloader.dataset)
109
+ num_batches = len(dataloader)
110
+ model.train()
111
+ train_loss = 0
112
+ correct = 0
113
+ for batch, (X,y) in enumerate(dataloader):
114
+ X, y = X.to(device), y.to(device)
115
+
116
+ #compute prediction error
117
+ pred = model(X)
118
+ loss = loss_fn(pred,y)
119
+
120
+ # backpropagation
121
+ optimizer.zero_grad()
122
+ loss.backward()
123
+ optimizer.step()
124
+ train_loss += loss.item()
125
+ _, labels = torch.max(pred.data, 1)
126
+ correct += labels.eq(y.data).type(torch.float).sum()
127
+
128
+
129
+
130
+
131
+ if batch % 100 == 0:
132
+ loss, current = loss.item(), batch * len(X)
133
+ print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
134
+
135
+ train_loss /= num_batches
136
+ train_accuracy = 100. * correct.item() / size
137
+ print(train_accuracy)
138
+ return train_loss,train_accuracy
139
+
140
+
141
+
142
+ # Test loop
143
+
144
+ def test(dataloader, model, loss_fn):
145
+ size = len(dataloader.dataset)
146
+ num_batches = len(dataloader)
147
+ model.eval()
148
+ test_loss = 0
149
+ correct = 0
150
+ with torch.no_grad():
151
+ for X,y in dataloader:
152
+ X,y = X.to(device), y.to(device)
153
+ pred = model(X)
154
+ test_loss += loss_fn(pred, y).item()
155
+ correct += (pred.argmax(1) == y).type(torch.float).sum().item()
156
+ test_loss /= num_batches
157
+ correct /= size
158
+ print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
159
+ test_accuracy = 100*correct
160
+ return test_loss, test_accuracy
161
+
162
+
163
+
164
+ # apply train and test
165
+
166
+ logname = "/PATH/Contextualizer_mlp/Experiments_cifar10/logs_contextualizer/logs_cifar10.csv"
167
+ if not os.path.exists(logname):
168
+ with open(logname, 'w') as logfile:
169
+ logwriter = csv.writer(logfile, delimiter=',')
170
+ logwriter.writerow(['epoch', 'train loss', 'train acc',
171
+ 'test loss', 'test acc'])
172
+
173
+
174
+ epochs = 100
175
+ for epoch in range(epochs):
176
+ print(f"Epoch {epoch+1}\n-----------------------------------")
177
+ train_loss, train_acc = train(train_dataloader, model, loss_fn, optimizer)
178
+ # learning rate scheduler
179
+ #if scheduler is not None:
180
+ # scheduler.step()
181
+ test_loss, test_acc = test(test_dataloader, model, loss_fn)
182
+ with open(logname, 'a') as logfile:
183
+ logwriter = csv.writer(logfile, delimiter=',')
184
+ logwriter.writerow([epoch+1, train_loss, train_acc,
185
+ test_loss, test_acc])
186
+ print("Done!")
187
+
188
+ # saving trained model
189
+
190
+ path = "/PATH/Contextualizer_mlp/Experiments_cifar10/weights_contextualizer"
191
+ model_name = "ContextualizerImageClassification_cifar10"
192
+ torch.save(model.state_dict(), f"{path}/{model_name}.pth")
193
+ print(f"Saved Model State to {path}/{model_name}.pth ")
194
+
train_mlp_nin.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #imports
2
+
3
+ import os
4
+ import csv
5
+ import torch
6
+ from torch import nn
7
+ from torch.utils.data import DataLoader
8
+ from torchvision import datasets
9
+ from torchvision.transforms import ToTensor, Normalize, RandomCrop, RandomHorizontalFlip, Compose
10
+ from contextualizer_mlp_nin import ContextualizerNiN
11
+
12
+ # data transforms
13
+
14
+ transform = Compose([
15
+ RandomCrop(32, padding=4),
16
+ RandomHorizontalFlip(),
17
+ ToTensor(),
18
+ Normalize((0.5, 0.5,0.5),(0.5, 0.5,0.5))
19
+
20
+ ])
21
+
22
+ training_data = datasets.CIFAR10(
23
+ root='data',
24
+ train=True,
25
+ download=True,
26
+ transform=transform
27
+ )
28
+
29
+ test_data = datasets.CIFAR10(
30
+ root='data',
31
+ train=False,
32
+ download=True,
33
+ transform=transform
34
+ )
35
+ # create dataloaders
36
+
37
+ batch_size = 128
38
+
39
+ train_dataloader = DataLoader(training_data, batch_size=batch_size,shuffle=True)
40
+ test_dataloader = DataLoader(test_data, batch_size=batch_size)
41
+
42
+
43
+ for X, y in test_dataloader:
44
+ print(f"Shape of X [N,C,H,W]:{X.shape}")
45
+ print(f"Shape of y:{y.shape}{y.dtype}")
46
+ break
47
+
48
+ # size checking for loading images
49
+ def check_sizes(image_size, patch_size):
50
+ sqrt_num_patches, remainder = divmod(image_size, patch_size)
51
+ assert remainder == 0, "`image_size` must be divisibe by `patch_size`"
52
+ num_patches = sqrt_num_patches ** 2
53
+ return num_patches
54
+
55
+
56
+
57
+ # create model
58
+ # Get cpu or gpu device for training.
59
+ device = "cuda" if torch.cuda.is_available() else "cpu"
60
+
61
+ print(f"using {device} device")
62
+
63
+ # model definition
64
+
65
+ class ContextualizerNiNImageClassification(ContextualizerNiN):
66
+ def __init__(
67
+ self,
68
+ image_size=32,
69
+ patch_size=4,
70
+ in_channels=3,
71
+ num_classes=10,
72
+ d_ffn=512,
73
+ d_model = 256,
74
+ num_tokens = 64,
75
+ num_layers=4,
76
+ dropout=0.5
77
+ ):
78
+ num_patches = check_sizes(image_size, patch_size)
79
+ super().__init__(d_model,d_ffn,num_layers,dropout, num_tokens)
80
+ self.patcher = nn.Conv2d(
81
+ in_channels, d_model, kernel_size=patch_size, stride=patch_size
82
+ )
83
+ self.classifier = nn.Linear(d_model, num_classes)
84
+
85
+ def forward(self, x):
86
+
87
+ patches = self.patcher(x)
88
+ batch_size, num_channels, _, _ = patches.shape
89
+ patches = patches.permute(0, 2, 3, 1)
90
+ patches = patches.view(batch_size, -1, num_channels)
91
+ embedding = self.model(patches)
92
+ embedding = embedding.mean(dim=1) # global average pooling
93
+ out = self.classifier(embedding)
94
+ return out
95
+
96
+ model = ContextualizerNiNImageClassification().to(device)
97
+ print(model)
98
+
99
+ # Optimizer
100
+
101
+ loss_fn = nn.CrossEntropyLoss()
102
+ optimizer = torch.optim.Adam(model.parameters(),lr=1e-3)
103
+
104
+
105
+ # Training Loop
106
+
107
+ def train(dataloader, model, loss_fn, optimizer):
108
+ size = len(dataloader.dataset)
109
+ num_batches = len(dataloader)
110
+ model.train()
111
+ train_loss = 0
112
+ correct = 0
113
+ for batch, (X,y) in enumerate(dataloader):
114
+ X, y = X.to(device), y.to(device)
115
+
116
+ #compute prediction error
117
+ pred = model(X)
118
+ loss = loss_fn(pred,y)
119
+
120
+ # backpropagation
121
+ optimizer.zero_grad()
122
+ loss.backward()
123
+ optimizer.step()
124
+ train_loss += loss.item()
125
+ _, labels = torch.max(pred.data, 1)
126
+ correct += labels.eq(y.data).type(torch.float).sum()
127
+
128
+
129
+
130
+
131
+ if batch % 100 == 0:
132
+ loss, current = loss.item(), batch * len(X)
133
+ print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
134
+
135
+ train_loss /= num_batches
136
+ train_accuracy = 100. * correct.item() / size
137
+ print(train_accuracy)
138
+ return train_loss,train_accuracy
139
+
140
+
141
+
142
+ # Test loop
143
+
144
+ def test(dataloader, model, loss_fn):
145
+ size = len(dataloader.dataset)
146
+ num_batches = len(dataloader)
147
+ model.eval()
148
+ test_loss = 0
149
+ correct = 0
150
+ with torch.no_grad():
151
+ for X,y in dataloader:
152
+ X,y = X.to(device), y.to(device)
153
+ pred = model(X)
154
+ test_loss += loss_fn(pred, y).item()
155
+ correct += (pred.argmax(1) == y).type(torch.float).sum().item()
156
+ test_loss /= num_batches
157
+ correct /= size
158
+ print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
159
+ test_accuracy = 100*correct
160
+ return test_loss, test_accuracy
161
+
162
+
163
+
164
+ # apply train and test
165
+
166
+ logname = "/PATH/Contextualizer_mlp_NiN/Experiments_cifar10/logs_contextualizer/logs_cifar10.csv"
167
+ if not os.path.exists(logname):
168
+ with open(logname, 'w') as logfile:
169
+ logwriter = csv.writer(logfile, delimiter=',')
170
+ logwriter.writerow(['epoch', 'train loss', 'train acc',
171
+ 'test loss', 'test acc'])
172
+
173
+
174
+ epochs = 100
175
+ for epoch in range(epochs):
176
+ print(f"Epoch {epoch+1}\n-----------------------------------")
177
+ train_loss, train_acc = train(train_dataloader, model, loss_fn, optimizer)
178
+ # learning rate scheduler
179
+ #if scheduler is not None:
180
+ # scheduler.step()
181
+ test_loss, test_acc = test(test_dataloader, model, loss_fn)
182
+ with open(logname, 'a') as logfile:
183
+ logwriter = csv.writer(logfile, delimiter=',')
184
+ logwriter.writerow([epoch+1, train_loss, train_acc,
185
+ test_loss, test_acc])
186
+ print("Done!")
187
+
188
+ # saving trained model
189
+
190
+ path = "/PATH/Contextualizer_mlp_NiN/Experiments_cifar10/weights_contextualizer"
191
+ model_name = "ContextualizerMLPNiNImageClassification_cifar10"
192
+ torch.save(model.state_dict(), f"{path}/{model_name}.pth")
193
+ print(f"Saved Model State to {path}/{model_name}.pth ")
194
+
train_nin.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #imports
2
+
3
+ import os
4
+ import csv
5
+ import torch
6
+ from torch import nn
7
+ from torch.utils.data import DataLoader
8
+ from torchvision import datasets
9
+ from torchvision.transforms import ToTensor, Normalize, RandomCrop, RandomHorizontalFlip, Compose
10
+ from contextualizer_nin import ContextualizerNiN
11
+
12
+ # data transforms
13
+
14
+ transform = Compose([
15
+ RandomCrop(32, padding=4),
16
+ RandomHorizontalFlip(),
17
+ ToTensor(),
18
+ Normalize((0.5, 0.5,0.5),(0.5, 0.5,0.5))
19
+
20
+ ])
21
+
22
+ training_data = datasets.CIFAR10(
23
+ root='data',
24
+ train=True,
25
+ download=True,
26
+ transform=transform
27
+ )
28
+
29
+ test_data = datasets.CIFAR10(
30
+ root='data',
31
+ train=False,
32
+ download=True,
33
+ transform=transform
34
+ )
35
+ # create dataloaders
36
+
37
+ batch_size = 128
38
+
39
+ train_dataloader = DataLoader(training_data, batch_size=batch_size,shuffle=True)
40
+ test_dataloader = DataLoader(test_data, batch_size=batch_size)
41
+
42
+
43
+ for X, y in test_dataloader:
44
+ print(f"Shape of X [N,C,H,W]:{X.shape}")
45
+ print(f"Shape of y:{y.shape}{y.dtype}")
46
+ break
47
+
48
+ # size checking for loading images
49
+ def check_sizes(image_size, patch_size):
50
+ sqrt_num_patches, remainder = divmod(image_size, patch_size)
51
+ assert remainder == 0, "`image_size` must be divisibe by `patch_size`"
52
+ num_patches = sqrt_num_patches ** 2
53
+ return num_patches
54
+
55
+
56
+
57
+ # create model
58
+ # Get cpu or gpu device for training.
59
+ device = "cuda" if torch.cuda.is_available() else "cpu"
60
+
61
+ print(f"using {device} device")
62
+
63
+ # model definition
64
+
65
+ class ContextualizerNiNImageClassification(ContextualizerNiN):
66
+ def __init__(
67
+ self,
68
+ image_size=32,
69
+ patch_size=4,
70
+ in_channels=3,
71
+ num_classes=10,
72
+ d_ffn=512,
73
+ d_model = 256,
74
+ num_tokens = 64,
75
+ num_layers=4,
76
+ dropout=0.5
77
+ ):
78
+ num_patches = check_sizes(image_size, patch_size)
79
+ super().__init__(d_model,d_ffn,num_layers,dropout, num_tokens)
80
+ self.patcher = nn.Conv2d(
81
+ in_channels, d_model, kernel_size=patch_size, stride=patch_size
82
+ )
83
+ self.classifier = nn.Linear(d_model, num_classes)
84
+
85
+ def forward(self, x):
86
+
87
+ patches = self.patcher(x)
88
+ batch_size, num_channels, _, _ = patches.shape
89
+ patches = patches.permute(0, 2, 3, 1)
90
+ patches = patches.view(batch_size, -1, num_channels)
91
+ embedding = self.model(patches)
92
+ embedding = embedding.mean(dim=1) # global average pooling
93
+ out = self.classifier(embedding)
94
+ return out
95
+
96
+ model = ContextualizerNiNImageClassification().to(device)
97
+ print(model)
98
+
99
+ # Optimizer
100
+
101
+ loss_fn = nn.CrossEntropyLoss()
102
+ optimizer = torch.optim.Adam(model.parameters(),lr=1e-3)
103
+
104
+
105
+ # Training Loop
106
+
107
+ def train(dataloader, model, loss_fn, optimizer):
108
+ size = len(dataloader.dataset)
109
+ num_batches = len(dataloader)
110
+ model.train()
111
+ train_loss = 0
112
+ correct = 0
113
+ for batch, (X,y) in enumerate(dataloader):
114
+ X, y = X.to(device), y.to(device)
115
+
116
+ #compute prediction error
117
+ pred = model(X)
118
+ loss = loss_fn(pred,y)
119
+
120
+ # backpropagation
121
+ optimizer.zero_grad()
122
+ loss.backward()
123
+ optimizer.step()
124
+ train_loss += loss.item()
125
+ _, labels = torch.max(pred.data, 1)
126
+ correct += labels.eq(y.data).type(torch.float).sum()
127
+
128
+
129
+
130
+
131
+ if batch % 100 == 0:
132
+ loss, current = loss.item(), batch * len(X)
133
+ print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
134
+
135
+ train_loss /= num_batches
136
+ train_accuracy = 100. * correct.item() / size
137
+ print(train_accuracy)
138
+ return train_loss,train_accuracy
139
+
140
+
141
+
142
+ # Test loop
143
+
144
+ def test(dataloader, model, loss_fn):
145
+ size = len(dataloader.dataset)
146
+ num_batches = len(dataloader)
147
+ model.eval()
148
+ test_loss = 0
149
+ correct = 0
150
+ with torch.no_grad():
151
+ for X,y in dataloader:
152
+ X,y = X.to(device), y.to(device)
153
+ pred = model(X)
154
+ test_loss += loss_fn(pred, y).item()
155
+ correct += (pred.argmax(1) == y).type(torch.float).sum().item()
156
+ test_loss /= num_batches
157
+ correct /= size
158
+ print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
159
+ test_accuracy = 100*correct
160
+ return test_loss, test_accuracy
161
+
162
+
163
+
164
+ # apply train and test
165
+
166
+ logname = "/PATH/Contextualizer_NiN/Experiments_cifar10/logs_contextualizer/logs_cifar10.csv"
167
+ if not os.path.exists(logname):
168
+ with open(logname, 'w') as logfile:
169
+ logwriter = csv.writer(logfile, delimiter=',')
170
+ logwriter.writerow(['epoch', 'train loss', 'train acc',
171
+ 'test loss', 'test acc'])
172
+
173
+
174
+ epochs = 100
175
+ for epoch in range(epochs):
176
+ print(f"Epoch {epoch+1}\n-----------------------------------")
177
+ train_loss, train_acc = train(train_dataloader, model, loss_fn, optimizer)
178
+ # learning rate scheduler
179
+ #if scheduler is not None:
180
+ # scheduler.step()
181
+ test_loss, test_acc = test(test_dataloader, model, loss_fn)
182
+ with open(logname, 'a') as logfile:
183
+ logwriter = csv.writer(logfile, delimiter=',')
184
+ logwriter.writerow([epoch+1, train_loss, train_acc,
185
+ test_loss, test_acc])
186
+ print("Done!")
187
+
188
+ # saving trained model
189
+
190
+ path = "/PATH/Contextualizer_NiN/Experiments_cifar10/weights_contextualizer"
191
+ model_name = "ContextualizerNiNImageClassification_cifar10"
192
+ torch.save(model.state_dict(), f"{path}/{model_name}.pth")
193
+ print(f"Saved Model State to {path}/{model_name}.pth ")
194
+