Abdullah-Nazhat
commited on
Upload 8 files
Browse files- contextualizer.py +93 -0
- contextualizer_mlp.py +93 -0
- contextualizer_mlp_nin.py +126 -0
- contextualizer_nin.py +126 -0
- train.py +194 -0
- train_mlp.py +194 -0
- train_mlp_nin.py +194 -0
- train_nin.py +194 -0
contextualizer.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
class FeedForward(nn.Module):
|
9 |
+
def __init__(self, dim, hidden_dim, dropout):
|
10 |
+
super().__init__()
|
11 |
+
self.net = nn.Sequential(
|
12 |
+
nn.Linear(dim, hidden_dim),
|
13 |
+
nn.GELU(),
|
14 |
+
nn.Dropout(dropout),
|
15 |
+
nn.Linear(hidden_dim, dim),
|
16 |
+
nn.Dropout(dropout)
|
17 |
+
)
|
18 |
+
def forward(self, x):
|
19 |
+
return self.net(x)
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
class ContextualizerBlock(nn.Module):
|
30 |
+
def __init__(self, d_model,d_ffn,dropout,num_tokens):
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.context_proj = nn.Linear(d_model,d_model)
|
34 |
+
self.mlp = FeedForward(d_model,d_ffn,dropout)
|
35 |
+
self.norm = nn.LayerNorm(d_model)
|
36 |
+
self.upsample = nn.Upsample(scale_factor=num_tokens,mode='nearest')
|
37 |
+
self.downsample = nn.Upsample(scale_factor= 1/num_tokens, mode='nearest')
|
38 |
+
def forward(self, x):
|
39 |
+
res = x
|
40 |
+
x = self.norm(x)
|
41 |
+
|
42 |
+
context = x
|
43 |
+
dim0 = context.shape[0]
|
44 |
+
dim1 = context.shape[1]
|
45 |
+
dim2 = context.shape[2]
|
46 |
+
context = context.reshape([dim0,1,dim1*dim2])
|
47 |
+
|
48 |
+
context = self.downsample(context)
|
49 |
+
context = context.reshape([dim0,dim2])
|
50 |
+
context = self.context_proj(context)
|
51 |
+
|
52 |
+
context = context.reshape([dim0,1,dim2])
|
53 |
+
context = self.upsample(context)
|
54 |
+
context = context.reshape([dim0,dim1,dim2])
|
55 |
+
x = context
|
56 |
+
x = x + res
|
57 |
+
res = x
|
58 |
+
x = self.norm(x)
|
59 |
+
x = self.mlp(x)
|
60 |
+
out = x + res
|
61 |
+
return out
|
62 |
+
return
|
63 |
+
|
64 |
+
class Contextualizer(nn.Module):
|
65 |
+
def __init__(self, d_model, d_ffn, num_layers,dropout,num_tokens):
|
66 |
+
super().__init__()
|
67 |
+
|
68 |
+
self.model = nn.Sequential(
|
69 |
+
|
70 |
+
*[ContextualizerBlock(d_model,d_ffn,dropout,num_tokens) for _ in range(num_layers)],
|
71 |
+
|
72 |
+
|
73 |
+
)
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
|
77 |
+
x = self.model(x)
|
78 |
+
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
contextualizer_mlp.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
class FeedForward(nn.Module):
|
9 |
+
def __init__(self, dim, hidden_dim, dropout):
|
10 |
+
super().__init__()
|
11 |
+
self.net = nn.Sequential(
|
12 |
+
nn.Linear(dim, hidden_dim),
|
13 |
+
nn.GELU(),
|
14 |
+
nn.Dropout(dropout),
|
15 |
+
nn.Linear(hidden_dim, dim),
|
16 |
+
nn.Dropout(dropout)
|
17 |
+
)
|
18 |
+
def forward(self, x):
|
19 |
+
return self.net(x)
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
class ContextualizerBlock(nn.Module):
|
30 |
+
def __init__(self, d_model,d_ffn,dropout,num_tokens):
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.context_mlp = FeedForward(d_model,d_ffn,dropout)
|
34 |
+
self.mlp = FeedForward(d_model,d_ffn,dropout)
|
35 |
+
self.norm = nn.LayerNorm(d_model)
|
36 |
+
self.upsample = nn.Upsample(scale_factor=num_tokens,mode='nearest')
|
37 |
+
self.downsample = nn.Upsample(scale_factor= 1/num_tokens, mode='nearest')
|
38 |
+
def forward(self, x):
|
39 |
+
res = x
|
40 |
+
x = self.norm(x)
|
41 |
+
|
42 |
+
context = x
|
43 |
+
dim0 = context.shape[0]
|
44 |
+
dim1 = context.shape[1]
|
45 |
+
dim2 = context.shape[2]
|
46 |
+
context = context.reshape([dim0,1,dim1*dim2])
|
47 |
+
|
48 |
+
context = self.downsample(context)
|
49 |
+
context = context.reshape([dim0,dim2])
|
50 |
+
context = self.context_mlp(context)
|
51 |
+
|
52 |
+
context = context.reshape([dim0,1,dim2])
|
53 |
+
context = self.upsample(context)
|
54 |
+
context = context.reshape([dim0,dim1,dim2])
|
55 |
+
x = context
|
56 |
+
x = x + res
|
57 |
+
res = x
|
58 |
+
x = self.norm(x)
|
59 |
+
x = self.mlp(x)
|
60 |
+
out = x + res
|
61 |
+
return out
|
62 |
+
return
|
63 |
+
|
64 |
+
class Contextualizer(nn.Module):
|
65 |
+
def __init__(self, d_model, d_ffn, num_layers,dropout,num_tokens):
|
66 |
+
super().__init__()
|
67 |
+
|
68 |
+
self.model = nn.Sequential(
|
69 |
+
|
70 |
+
*[ContextualizerBlock(d_model,d_ffn,dropout,num_tokens) for _ in range(num_layers)],
|
71 |
+
|
72 |
+
|
73 |
+
)
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
|
77 |
+
x = self.model(x)
|
78 |
+
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
contextualizer_mlp_nin.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
class FeedForward(nn.Module):
|
9 |
+
def __init__(self, dim, hidden_dim, dropout):
|
10 |
+
super().__init__()
|
11 |
+
self.net = nn.Sequential(
|
12 |
+
nn.Linear(dim, hidden_dim),
|
13 |
+
nn.GELU(),
|
14 |
+
nn.Dropout(dropout),
|
15 |
+
nn.Linear(hidden_dim, dim),
|
16 |
+
nn.Dropout(dropout)
|
17 |
+
)
|
18 |
+
def forward(self, x):
|
19 |
+
return self.net(x)
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
class ContextualizerBlock(nn.Module):
|
30 |
+
def __init__(self, d_model,d_ffn,dropout,num_tokens):
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.context_mlp = FeedForward(d_model,d_ffn,dropout)
|
34 |
+
self.mlp = FeedForward(d_model,d_ffn,dropout)
|
35 |
+
self.norm = nn.LayerNorm(d_model)
|
36 |
+
self.upsample = nn.Upsample(scale_factor=num_tokens,mode='nearest')
|
37 |
+
self.downsample = nn.Upsample(scale_factor= 1/num_tokens, mode='nearest')
|
38 |
+
def forward(self, x):
|
39 |
+
res = x
|
40 |
+
x = self.norm(x)
|
41 |
+
|
42 |
+
context = x
|
43 |
+
dim0 = context.shape[0]
|
44 |
+
dim1 = context.shape[1]
|
45 |
+
dim2 = context.shape[2]
|
46 |
+
context = context.reshape([dim0,1,dim1*dim2])
|
47 |
+
|
48 |
+
context = self.downsample(context)
|
49 |
+
context = context.reshape([dim0,dim2])
|
50 |
+
context = self.context_mlp(context)
|
51 |
+
|
52 |
+
context = context.reshape([dim0,1,dim2])
|
53 |
+
context = self.upsample(context)
|
54 |
+
context = context.reshape([dim0,dim1,dim2])
|
55 |
+
x = context
|
56 |
+
x = x + res
|
57 |
+
res = x
|
58 |
+
x = self.norm(x)
|
59 |
+
x = self.mlp(x)
|
60 |
+
out = x + res
|
61 |
+
return out
|
62 |
+
return
|
63 |
+
|
64 |
+
|
65 |
+
class MixerGatingUnit(nn.Module):
|
66 |
+
def __init__(self,d_model,d_ffn,dropout,num_tokens):
|
67 |
+
super().__init__()
|
68 |
+
self.Mixer = ContextualizerBlock(d_model,d_ffn,dropout,num_tokens)
|
69 |
+
self.proj = nn.Linear(d_model,d_model)
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
u, v = x, x
|
73 |
+
u = self.proj(u)
|
74 |
+
v = self.Mixer(v)
|
75 |
+
out = u * v
|
76 |
+
return out
|
77 |
+
|
78 |
+
|
79 |
+
class ContextualizerNiNBlock(nn.Module):
|
80 |
+
def __init__(self, d_model,d_ffn,dropout,num_tokens):
|
81 |
+
super().__init__()
|
82 |
+
|
83 |
+
self.norm = nn.LayerNorm(d_model)
|
84 |
+
self.mgu = MixerGatingUnit(d_model,d_ffn,dropout,num_tokens)
|
85 |
+
self.ffn = FeedForward(d_model,d_ffn,dropout)
|
86 |
+
def forward(self, x):
|
87 |
+
residual = x
|
88 |
+
x = self.norm(x)
|
89 |
+
x = self.mgu(x)
|
90 |
+
x = x + residual
|
91 |
+
residual = x
|
92 |
+
x = self.norm(x)
|
93 |
+
x = self.ffn(x)
|
94 |
+
out = x + residual
|
95 |
+
return out
|
96 |
+
|
97 |
+
class ContextualizerNiN(nn.Module):
|
98 |
+
def __init__(self, d_model, d_ffn, num_layers,dropout,num_tokens):
|
99 |
+
super().__init__()
|
100 |
+
|
101 |
+
self.model = nn.Sequential(
|
102 |
+
|
103 |
+
*[ContextualizerNiNBlock(d_model,d_ffn,dropout,num_tokens) for _ in range(num_layers)],
|
104 |
+
|
105 |
+
|
106 |
+
)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
|
110 |
+
x = self.model(x)
|
111 |
+
|
112 |
+
return x
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
contextualizer_nin.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
class FeedForward(nn.Module):
|
9 |
+
def __init__(self, dim, hidden_dim, dropout):
|
10 |
+
super().__init__()
|
11 |
+
self.net = nn.Sequential(
|
12 |
+
nn.Linear(dim, hidden_dim),
|
13 |
+
nn.GELU(),
|
14 |
+
nn.Dropout(dropout),
|
15 |
+
nn.Linear(hidden_dim, dim),
|
16 |
+
nn.Dropout(dropout)
|
17 |
+
)
|
18 |
+
def forward(self, x):
|
19 |
+
return self.net(x)
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
class ContextualizerBlock(nn.Module):
|
30 |
+
def __init__(self, d_model,d_ffn,dropout,num_tokens):
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.context_proj = nn.Linear(d_model,d_model)
|
34 |
+
self.mlp = FeedForward(d_model,d_ffn,dropout)
|
35 |
+
self.norm = nn.LayerNorm(d_model)
|
36 |
+
self.upsample = nn.Upsample(scale_factor=num_tokens,mode='nearest')
|
37 |
+
self.downsample = nn.Upsample(scale_factor= 1/num_tokens, mode='nearest')
|
38 |
+
def forward(self, x):
|
39 |
+
res = x
|
40 |
+
x = self.norm(x)
|
41 |
+
|
42 |
+
context = x
|
43 |
+
dim0 = context.shape[0]
|
44 |
+
dim1 = context.shape[1]
|
45 |
+
dim2 = context.shape[2]
|
46 |
+
context = context.reshape([dim0,1,dim1*dim2])
|
47 |
+
|
48 |
+
context = self.downsample(context)
|
49 |
+
context = context.reshape([dim0,dim2])
|
50 |
+
context = self.context_proj(context)
|
51 |
+
|
52 |
+
context = context.reshape([dim0,1,dim2])
|
53 |
+
context = self.upsample(context)
|
54 |
+
context = context.reshape([dim0,dim1,dim2])
|
55 |
+
x = context
|
56 |
+
x = x + res
|
57 |
+
res = x
|
58 |
+
x = self.norm(x)
|
59 |
+
x = self.mlp(x)
|
60 |
+
out = x + res
|
61 |
+
return out
|
62 |
+
return
|
63 |
+
|
64 |
+
|
65 |
+
class MixerGatingUnit(nn.Module):
|
66 |
+
def __init__(self,d_model,d_ffn,dropout,num_tokens):
|
67 |
+
super().__init__()
|
68 |
+
self.Mixer = ContextualizerBlock(d_model,d_ffn,dropout,num_tokens)
|
69 |
+
self.proj = nn.Linear(d_model,d_model)
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
u, v = x, x
|
73 |
+
u = self.proj(u)
|
74 |
+
v = self.Mixer(v)
|
75 |
+
out = u * v
|
76 |
+
return out
|
77 |
+
|
78 |
+
|
79 |
+
class ContextualizerNiNBlock(nn.Module):
|
80 |
+
def __init__(self, d_model,d_ffn,dropout,num_tokens):
|
81 |
+
super().__init__()
|
82 |
+
|
83 |
+
self.norm = nn.LayerNorm(d_model)
|
84 |
+
self.mgu = MixerGatingUnit(d_model,d_ffn,dropout,num_tokens)
|
85 |
+
self.ffn = FeedForward(d_model,d_ffn,dropout)
|
86 |
+
def forward(self, x):
|
87 |
+
residual = x
|
88 |
+
x = self.norm(x)
|
89 |
+
x = self.mgu(x)
|
90 |
+
x = x + residual
|
91 |
+
residual = x
|
92 |
+
x = self.norm(x)
|
93 |
+
x = self.ffn(x)
|
94 |
+
out = x + residual
|
95 |
+
return out
|
96 |
+
|
97 |
+
class ContextualizerNiN(nn.Module):
|
98 |
+
def __init__(self, d_model, d_ffn, num_layers,dropout,num_tokens):
|
99 |
+
super().__init__()
|
100 |
+
|
101 |
+
self.model = nn.Sequential(
|
102 |
+
|
103 |
+
*[ContextualizerNiNBlock(d_model,d_ffn,dropout,num_tokens) for _ in range(num_layers)],
|
104 |
+
|
105 |
+
|
106 |
+
)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
|
110 |
+
x = self.model(x)
|
111 |
+
|
112 |
+
return x
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
train.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#imports
|
2 |
+
|
3 |
+
import os
|
4 |
+
import csv
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
from torchvision import datasets
|
9 |
+
from torchvision.transforms import ToTensor, Normalize, RandomCrop, RandomHorizontalFlip, Compose
|
10 |
+
from contextualizer import Contextualizer
|
11 |
+
|
12 |
+
# data transforms
|
13 |
+
|
14 |
+
transform = Compose([
|
15 |
+
RandomCrop(32, padding=4),
|
16 |
+
RandomHorizontalFlip(),
|
17 |
+
ToTensor(),
|
18 |
+
Normalize((0.5, 0.5,0.5),(0.5, 0.5,0.5))
|
19 |
+
|
20 |
+
])
|
21 |
+
|
22 |
+
training_data = datasets.CIFAR10(
|
23 |
+
root='data',
|
24 |
+
train=True,
|
25 |
+
download=True,
|
26 |
+
transform=transform
|
27 |
+
)
|
28 |
+
|
29 |
+
test_data = datasets.CIFAR10(
|
30 |
+
root='data',
|
31 |
+
train=False,
|
32 |
+
download=True,
|
33 |
+
transform=transform
|
34 |
+
)
|
35 |
+
# create dataloaders
|
36 |
+
|
37 |
+
batch_size = 128
|
38 |
+
|
39 |
+
train_dataloader = DataLoader(training_data, batch_size=batch_size,shuffle=True)
|
40 |
+
test_dataloader = DataLoader(test_data, batch_size=batch_size)
|
41 |
+
|
42 |
+
|
43 |
+
for X, y in test_dataloader:
|
44 |
+
print(f"Shape of X [N,C,H,W]:{X.shape}")
|
45 |
+
print(f"Shape of y:{y.shape}{y.dtype}")
|
46 |
+
break
|
47 |
+
|
48 |
+
# size checking for loading images
|
49 |
+
def check_sizes(image_size, patch_size):
|
50 |
+
sqrt_num_patches, remainder = divmod(image_size, patch_size)
|
51 |
+
assert remainder == 0, "`image_size` must be divisibe by `patch_size`"
|
52 |
+
num_patches = sqrt_num_patches ** 2
|
53 |
+
return num_patches
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
# create model
|
58 |
+
# Get cpu or gpu device for training.
|
59 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
60 |
+
|
61 |
+
print(f"using {device} device")
|
62 |
+
|
63 |
+
# model definition
|
64 |
+
|
65 |
+
class ContextualizerImageClassification(Contextualizer):
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
image_size=32,
|
69 |
+
patch_size=4,
|
70 |
+
in_channels=3,
|
71 |
+
num_classes=10,
|
72 |
+
d_ffn=512,
|
73 |
+
d_model = 256,
|
74 |
+
num_tokens = 64,
|
75 |
+
num_layers=4,
|
76 |
+
dropout=0.5
|
77 |
+
):
|
78 |
+
num_patches = check_sizes(image_size, patch_size)
|
79 |
+
super().__init__(d_model,d_ffn,num_layers,dropout, num_tokens)
|
80 |
+
self.patcher = nn.Conv2d(
|
81 |
+
in_channels, d_model, kernel_size=patch_size, stride=patch_size
|
82 |
+
)
|
83 |
+
self.classifier = nn.Linear(d_model, num_classes)
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
|
87 |
+
patches = self.patcher(x)
|
88 |
+
batch_size, num_channels, _, _ = patches.shape
|
89 |
+
patches = patches.permute(0, 2, 3, 1)
|
90 |
+
patches = patches.view(batch_size, -1, num_channels)
|
91 |
+
embedding = self.model(patches)
|
92 |
+
embedding = embedding.mean(dim=1) # global average pooling
|
93 |
+
out = self.classifier(embedding)
|
94 |
+
return out
|
95 |
+
|
96 |
+
model = ContextualizerImageClassification().to(device)
|
97 |
+
print(model)
|
98 |
+
|
99 |
+
# Optimizer
|
100 |
+
|
101 |
+
loss_fn = nn.CrossEntropyLoss()
|
102 |
+
optimizer = torch.optim.Adam(model.parameters(),lr=1e-3)
|
103 |
+
|
104 |
+
|
105 |
+
# Training Loop
|
106 |
+
|
107 |
+
def train(dataloader, model, loss_fn, optimizer):
|
108 |
+
size = len(dataloader.dataset)
|
109 |
+
num_batches = len(dataloader)
|
110 |
+
model.train()
|
111 |
+
train_loss = 0
|
112 |
+
correct = 0
|
113 |
+
for batch, (X,y) in enumerate(dataloader):
|
114 |
+
X, y = X.to(device), y.to(device)
|
115 |
+
|
116 |
+
#compute prediction error
|
117 |
+
pred = model(X)
|
118 |
+
loss = loss_fn(pred,y)
|
119 |
+
|
120 |
+
# backpropagation
|
121 |
+
optimizer.zero_grad()
|
122 |
+
loss.backward()
|
123 |
+
optimizer.step()
|
124 |
+
train_loss += loss.item()
|
125 |
+
_, labels = torch.max(pred.data, 1)
|
126 |
+
correct += labels.eq(y.data).type(torch.float).sum()
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
if batch % 100 == 0:
|
132 |
+
loss, current = loss.item(), batch * len(X)
|
133 |
+
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
|
134 |
+
|
135 |
+
train_loss /= num_batches
|
136 |
+
train_accuracy = 100. * correct.item() / size
|
137 |
+
print(train_accuracy)
|
138 |
+
return train_loss,train_accuracy
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
# Test loop
|
143 |
+
|
144 |
+
def test(dataloader, model, loss_fn):
|
145 |
+
size = len(dataloader.dataset)
|
146 |
+
num_batches = len(dataloader)
|
147 |
+
model.eval()
|
148 |
+
test_loss = 0
|
149 |
+
correct = 0
|
150 |
+
with torch.no_grad():
|
151 |
+
for X,y in dataloader:
|
152 |
+
X,y = X.to(device), y.to(device)
|
153 |
+
pred = model(X)
|
154 |
+
test_loss += loss_fn(pred, y).item()
|
155 |
+
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
|
156 |
+
test_loss /= num_batches
|
157 |
+
correct /= size
|
158 |
+
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
|
159 |
+
test_accuracy = 100*correct
|
160 |
+
return test_loss, test_accuracy
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
# apply train and test
|
165 |
+
|
166 |
+
logname = "/PATH/Contextualizer/Experiments_cifar10/logs_contextualizer/logs_cifar10.csv"
|
167 |
+
if not os.path.exists(logname):
|
168 |
+
with open(logname, 'w') as logfile:
|
169 |
+
logwriter = csv.writer(logfile, delimiter=',')
|
170 |
+
logwriter.writerow(['epoch', 'train loss', 'train acc',
|
171 |
+
'test loss', 'test acc'])
|
172 |
+
|
173 |
+
|
174 |
+
epochs = 100
|
175 |
+
for epoch in range(epochs):
|
176 |
+
print(f"Epoch {epoch+1}\n-----------------------------------")
|
177 |
+
train_loss, train_acc = train(train_dataloader, model, loss_fn, optimizer)
|
178 |
+
# learning rate scheduler
|
179 |
+
#if scheduler is not None:
|
180 |
+
# scheduler.step()
|
181 |
+
test_loss, test_acc = test(test_dataloader, model, loss_fn)
|
182 |
+
with open(logname, 'a') as logfile:
|
183 |
+
logwriter = csv.writer(logfile, delimiter=',')
|
184 |
+
logwriter.writerow([epoch+1, train_loss, train_acc,
|
185 |
+
test_loss, test_acc])
|
186 |
+
print("Done!")
|
187 |
+
|
188 |
+
# saving trained model
|
189 |
+
|
190 |
+
path = "/PATH/Contextualizer/Experiments_cifar10/weights_contextualizer"
|
191 |
+
model_name = "ContextualizerImageClassification_cifar10"
|
192 |
+
torch.save(model.state_dict(), f"{path}/{model_name}.pth")
|
193 |
+
print(f"Saved Model State to {path}/{model_name}.pth ")
|
194 |
+
|
train_mlp.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#imports
|
2 |
+
|
3 |
+
import os
|
4 |
+
import csv
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
from torchvision import datasets
|
9 |
+
from torchvision.transforms import ToTensor, Normalize, RandomCrop, RandomHorizontalFlip, Compose
|
10 |
+
from contextualizer_mlp import Contextualizer
|
11 |
+
|
12 |
+
# data transforms
|
13 |
+
|
14 |
+
transform = Compose([
|
15 |
+
RandomCrop(32, padding=4),
|
16 |
+
RandomHorizontalFlip(),
|
17 |
+
ToTensor(),
|
18 |
+
Normalize((0.5, 0.5,0.5),(0.5, 0.5,0.5))
|
19 |
+
|
20 |
+
])
|
21 |
+
|
22 |
+
training_data = datasets.CIFAR10(
|
23 |
+
root='data',
|
24 |
+
train=True,
|
25 |
+
download=True,
|
26 |
+
transform=transform
|
27 |
+
)
|
28 |
+
|
29 |
+
test_data = datasets.CIFAR10(
|
30 |
+
root='data',
|
31 |
+
train=False,
|
32 |
+
download=True,
|
33 |
+
transform=transform
|
34 |
+
)
|
35 |
+
# create dataloaders
|
36 |
+
|
37 |
+
batch_size = 128
|
38 |
+
|
39 |
+
train_dataloader = DataLoader(training_data, batch_size=batch_size,shuffle=True)
|
40 |
+
test_dataloader = DataLoader(test_data, batch_size=batch_size)
|
41 |
+
|
42 |
+
|
43 |
+
for X, y in test_dataloader:
|
44 |
+
print(f"Shape of X [N,C,H,W]:{X.shape}")
|
45 |
+
print(f"Shape of y:{y.shape}{y.dtype}")
|
46 |
+
break
|
47 |
+
|
48 |
+
# size checking for loading images
|
49 |
+
def check_sizes(image_size, patch_size):
|
50 |
+
sqrt_num_patches, remainder = divmod(image_size, patch_size)
|
51 |
+
assert remainder == 0, "`image_size` must be divisibe by `patch_size`"
|
52 |
+
num_patches = sqrt_num_patches ** 2
|
53 |
+
return num_patches
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
# create model
|
58 |
+
# Get cpu or gpu device for training.
|
59 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
60 |
+
|
61 |
+
print(f"using {device} device")
|
62 |
+
|
63 |
+
# model definition
|
64 |
+
|
65 |
+
class ContextualizerImageClassification(Contextualizer):
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
image_size=32,
|
69 |
+
patch_size=4,
|
70 |
+
in_channels=3,
|
71 |
+
num_classes=10,
|
72 |
+
d_ffn=512,
|
73 |
+
d_model = 256,
|
74 |
+
num_tokens = 64,
|
75 |
+
num_layers=4,
|
76 |
+
dropout=0.5
|
77 |
+
):
|
78 |
+
num_patches = check_sizes(image_size, patch_size)
|
79 |
+
super().__init__(d_model,d_ffn,num_layers,dropout, num_tokens)
|
80 |
+
self.patcher = nn.Conv2d(
|
81 |
+
in_channels, d_model, kernel_size=patch_size, stride=patch_size
|
82 |
+
)
|
83 |
+
self.classifier = nn.Linear(d_model, num_classes)
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
|
87 |
+
patches = self.patcher(x)
|
88 |
+
batch_size, num_channels, _, _ = patches.shape
|
89 |
+
patches = patches.permute(0, 2, 3, 1)
|
90 |
+
patches = patches.view(batch_size, -1, num_channels)
|
91 |
+
embedding = self.model(patches)
|
92 |
+
embedding = embedding.mean(dim=1) # global average pooling
|
93 |
+
out = self.classifier(embedding)
|
94 |
+
return out
|
95 |
+
|
96 |
+
model = ContextualizerImageClassification().to(device)
|
97 |
+
print(model)
|
98 |
+
|
99 |
+
# Optimizer
|
100 |
+
|
101 |
+
loss_fn = nn.CrossEntropyLoss()
|
102 |
+
optimizer = torch.optim.Adam(model.parameters(),lr=1e-3)
|
103 |
+
|
104 |
+
|
105 |
+
# Training Loop
|
106 |
+
|
107 |
+
def train(dataloader, model, loss_fn, optimizer):
|
108 |
+
size = len(dataloader.dataset)
|
109 |
+
num_batches = len(dataloader)
|
110 |
+
model.train()
|
111 |
+
train_loss = 0
|
112 |
+
correct = 0
|
113 |
+
for batch, (X,y) in enumerate(dataloader):
|
114 |
+
X, y = X.to(device), y.to(device)
|
115 |
+
|
116 |
+
#compute prediction error
|
117 |
+
pred = model(X)
|
118 |
+
loss = loss_fn(pred,y)
|
119 |
+
|
120 |
+
# backpropagation
|
121 |
+
optimizer.zero_grad()
|
122 |
+
loss.backward()
|
123 |
+
optimizer.step()
|
124 |
+
train_loss += loss.item()
|
125 |
+
_, labels = torch.max(pred.data, 1)
|
126 |
+
correct += labels.eq(y.data).type(torch.float).sum()
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
if batch % 100 == 0:
|
132 |
+
loss, current = loss.item(), batch * len(X)
|
133 |
+
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
|
134 |
+
|
135 |
+
train_loss /= num_batches
|
136 |
+
train_accuracy = 100. * correct.item() / size
|
137 |
+
print(train_accuracy)
|
138 |
+
return train_loss,train_accuracy
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
# Test loop
|
143 |
+
|
144 |
+
def test(dataloader, model, loss_fn):
|
145 |
+
size = len(dataloader.dataset)
|
146 |
+
num_batches = len(dataloader)
|
147 |
+
model.eval()
|
148 |
+
test_loss = 0
|
149 |
+
correct = 0
|
150 |
+
with torch.no_grad():
|
151 |
+
for X,y in dataloader:
|
152 |
+
X,y = X.to(device), y.to(device)
|
153 |
+
pred = model(X)
|
154 |
+
test_loss += loss_fn(pred, y).item()
|
155 |
+
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
|
156 |
+
test_loss /= num_batches
|
157 |
+
correct /= size
|
158 |
+
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
|
159 |
+
test_accuracy = 100*correct
|
160 |
+
return test_loss, test_accuracy
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
# apply train and test
|
165 |
+
|
166 |
+
logname = "/PATH/Contextualizer_mlp/Experiments_cifar10/logs_contextualizer/logs_cifar10.csv"
|
167 |
+
if not os.path.exists(logname):
|
168 |
+
with open(logname, 'w') as logfile:
|
169 |
+
logwriter = csv.writer(logfile, delimiter=',')
|
170 |
+
logwriter.writerow(['epoch', 'train loss', 'train acc',
|
171 |
+
'test loss', 'test acc'])
|
172 |
+
|
173 |
+
|
174 |
+
epochs = 100
|
175 |
+
for epoch in range(epochs):
|
176 |
+
print(f"Epoch {epoch+1}\n-----------------------------------")
|
177 |
+
train_loss, train_acc = train(train_dataloader, model, loss_fn, optimizer)
|
178 |
+
# learning rate scheduler
|
179 |
+
#if scheduler is not None:
|
180 |
+
# scheduler.step()
|
181 |
+
test_loss, test_acc = test(test_dataloader, model, loss_fn)
|
182 |
+
with open(logname, 'a') as logfile:
|
183 |
+
logwriter = csv.writer(logfile, delimiter=',')
|
184 |
+
logwriter.writerow([epoch+1, train_loss, train_acc,
|
185 |
+
test_loss, test_acc])
|
186 |
+
print("Done!")
|
187 |
+
|
188 |
+
# saving trained model
|
189 |
+
|
190 |
+
path = "/PATH/Contextualizer_mlp/Experiments_cifar10/weights_contextualizer"
|
191 |
+
model_name = "ContextualizerImageClassification_cifar10"
|
192 |
+
torch.save(model.state_dict(), f"{path}/{model_name}.pth")
|
193 |
+
print(f"Saved Model State to {path}/{model_name}.pth ")
|
194 |
+
|
train_mlp_nin.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#imports
|
2 |
+
|
3 |
+
import os
|
4 |
+
import csv
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
from torchvision import datasets
|
9 |
+
from torchvision.transforms import ToTensor, Normalize, RandomCrop, RandomHorizontalFlip, Compose
|
10 |
+
from contextualizer_mlp_nin import ContextualizerNiN
|
11 |
+
|
12 |
+
# data transforms
|
13 |
+
|
14 |
+
transform = Compose([
|
15 |
+
RandomCrop(32, padding=4),
|
16 |
+
RandomHorizontalFlip(),
|
17 |
+
ToTensor(),
|
18 |
+
Normalize((0.5, 0.5,0.5),(0.5, 0.5,0.5))
|
19 |
+
|
20 |
+
])
|
21 |
+
|
22 |
+
training_data = datasets.CIFAR10(
|
23 |
+
root='data',
|
24 |
+
train=True,
|
25 |
+
download=True,
|
26 |
+
transform=transform
|
27 |
+
)
|
28 |
+
|
29 |
+
test_data = datasets.CIFAR10(
|
30 |
+
root='data',
|
31 |
+
train=False,
|
32 |
+
download=True,
|
33 |
+
transform=transform
|
34 |
+
)
|
35 |
+
# create dataloaders
|
36 |
+
|
37 |
+
batch_size = 128
|
38 |
+
|
39 |
+
train_dataloader = DataLoader(training_data, batch_size=batch_size,shuffle=True)
|
40 |
+
test_dataloader = DataLoader(test_data, batch_size=batch_size)
|
41 |
+
|
42 |
+
|
43 |
+
for X, y in test_dataloader:
|
44 |
+
print(f"Shape of X [N,C,H,W]:{X.shape}")
|
45 |
+
print(f"Shape of y:{y.shape}{y.dtype}")
|
46 |
+
break
|
47 |
+
|
48 |
+
# size checking for loading images
|
49 |
+
def check_sizes(image_size, patch_size):
|
50 |
+
sqrt_num_patches, remainder = divmod(image_size, patch_size)
|
51 |
+
assert remainder == 0, "`image_size` must be divisibe by `patch_size`"
|
52 |
+
num_patches = sqrt_num_patches ** 2
|
53 |
+
return num_patches
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
# create model
|
58 |
+
# Get cpu or gpu device for training.
|
59 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
60 |
+
|
61 |
+
print(f"using {device} device")
|
62 |
+
|
63 |
+
# model definition
|
64 |
+
|
65 |
+
class ContextualizerNiNImageClassification(ContextualizerNiN):
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
image_size=32,
|
69 |
+
patch_size=4,
|
70 |
+
in_channels=3,
|
71 |
+
num_classes=10,
|
72 |
+
d_ffn=512,
|
73 |
+
d_model = 256,
|
74 |
+
num_tokens = 64,
|
75 |
+
num_layers=4,
|
76 |
+
dropout=0.5
|
77 |
+
):
|
78 |
+
num_patches = check_sizes(image_size, patch_size)
|
79 |
+
super().__init__(d_model,d_ffn,num_layers,dropout, num_tokens)
|
80 |
+
self.patcher = nn.Conv2d(
|
81 |
+
in_channels, d_model, kernel_size=patch_size, stride=patch_size
|
82 |
+
)
|
83 |
+
self.classifier = nn.Linear(d_model, num_classes)
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
|
87 |
+
patches = self.patcher(x)
|
88 |
+
batch_size, num_channels, _, _ = patches.shape
|
89 |
+
patches = patches.permute(0, 2, 3, 1)
|
90 |
+
patches = patches.view(batch_size, -1, num_channels)
|
91 |
+
embedding = self.model(patches)
|
92 |
+
embedding = embedding.mean(dim=1) # global average pooling
|
93 |
+
out = self.classifier(embedding)
|
94 |
+
return out
|
95 |
+
|
96 |
+
model = ContextualizerNiNImageClassification().to(device)
|
97 |
+
print(model)
|
98 |
+
|
99 |
+
# Optimizer
|
100 |
+
|
101 |
+
loss_fn = nn.CrossEntropyLoss()
|
102 |
+
optimizer = torch.optim.Adam(model.parameters(),lr=1e-3)
|
103 |
+
|
104 |
+
|
105 |
+
# Training Loop
|
106 |
+
|
107 |
+
def train(dataloader, model, loss_fn, optimizer):
|
108 |
+
size = len(dataloader.dataset)
|
109 |
+
num_batches = len(dataloader)
|
110 |
+
model.train()
|
111 |
+
train_loss = 0
|
112 |
+
correct = 0
|
113 |
+
for batch, (X,y) in enumerate(dataloader):
|
114 |
+
X, y = X.to(device), y.to(device)
|
115 |
+
|
116 |
+
#compute prediction error
|
117 |
+
pred = model(X)
|
118 |
+
loss = loss_fn(pred,y)
|
119 |
+
|
120 |
+
# backpropagation
|
121 |
+
optimizer.zero_grad()
|
122 |
+
loss.backward()
|
123 |
+
optimizer.step()
|
124 |
+
train_loss += loss.item()
|
125 |
+
_, labels = torch.max(pred.data, 1)
|
126 |
+
correct += labels.eq(y.data).type(torch.float).sum()
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
if batch % 100 == 0:
|
132 |
+
loss, current = loss.item(), batch * len(X)
|
133 |
+
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
|
134 |
+
|
135 |
+
train_loss /= num_batches
|
136 |
+
train_accuracy = 100. * correct.item() / size
|
137 |
+
print(train_accuracy)
|
138 |
+
return train_loss,train_accuracy
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
# Test loop
|
143 |
+
|
144 |
+
def test(dataloader, model, loss_fn):
|
145 |
+
size = len(dataloader.dataset)
|
146 |
+
num_batches = len(dataloader)
|
147 |
+
model.eval()
|
148 |
+
test_loss = 0
|
149 |
+
correct = 0
|
150 |
+
with torch.no_grad():
|
151 |
+
for X,y in dataloader:
|
152 |
+
X,y = X.to(device), y.to(device)
|
153 |
+
pred = model(X)
|
154 |
+
test_loss += loss_fn(pred, y).item()
|
155 |
+
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
|
156 |
+
test_loss /= num_batches
|
157 |
+
correct /= size
|
158 |
+
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
|
159 |
+
test_accuracy = 100*correct
|
160 |
+
return test_loss, test_accuracy
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
# apply train and test
|
165 |
+
|
166 |
+
logname = "/PATH/Contextualizer_mlp_NiN/Experiments_cifar10/logs_contextualizer/logs_cifar10.csv"
|
167 |
+
if not os.path.exists(logname):
|
168 |
+
with open(logname, 'w') as logfile:
|
169 |
+
logwriter = csv.writer(logfile, delimiter=',')
|
170 |
+
logwriter.writerow(['epoch', 'train loss', 'train acc',
|
171 |
+
'test loss', 'test acc'])
|
172 |
+
|
173 |
+
|
174 |
+
epochs = 100
|
175 |
+
for epoch in range(epochs):
|
176 |
+
print(f"Epoch {epoch+1}\n-----------------------------------")
|
177 |
+
train_loss, train_acc = train(train_dataloader, model, loss_fn, optimizer)
|
178 |
+
# learning rate scheduler
|
179 |
+
#if scheduler is not None:
|
180 |
+
# scheduler.step()
|
181 |
+
test_loss, test_acc = test(test_dataloader, model, loss_fn)
|
182 |
+
with open(logname, 'a') as logfile:
|
183 |
+
logwriter = csv.writer(logfile, delimiter=',')
|
184 |
+
logwriter.writerow([epoch+1, train_loss, train_acc,
|
185 |
+
test_loss, test_acc])
|
186 |
+
print("Done!")
|
187 |
+
|
188 |
+
# saving trained model
|
189 |
+
|
190 |
+
path = "/PATH/Contextualizer_mlp_NiN/Experiments_cifar10/weights_contextualizer"
|
191 |
+
model_name = "ContextualizerMLPNiNImageClassification_cifar10"
|
192 |
+
torch.save(model.state_dict(), f"{path}/{model_name}.pth")
|
193 |
+
print(f"Saved Model State to {path}/{model_name}.pth ")
|
194 |
+
|
train_nin.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#imports
|
2 |
+
|
3 |
+
import os
|
4 |
+
import csv
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
from torchvision import datasets
|
9 |
+
from torchvision.transforms import ToTensor, Normalize, RandomCrop, RandomHorizontalFlip, Compose
|
10 |
+
from contextualizer_nin import ContextualizerNiN
|
11 |
+
|
12 |
+
# data transforms
|
13 |
+
|
14 |
+
transform = Compose([
|
15 |
+
RandomCrop(32, padding=4),
|
16 |
+
RandomHorizontalFlip(),
|
17 |
+
ToTensor(),
|
18 |
+
Normalize((0.5, 0.5,0.5),(0.5, 0.5,0.5))
|
19 |
+
|
20 |
+
])
|
21 |
+
|
22 |
+
training_data = datasets.CIFAR10(
|
23 |
+
root='data',
|
24 |
+
train=True,
|
25 |
+
download=True,
|
26 |
+
transform=transform
|
27 |
+
)
|
28 |
+
|
29 |
+
test_data = datasets.CIFAR10(
|
30 |
+
root='data',
|
31 |
+
train=False,
|
32 |
+
download=True,
|
33 |
+
transform=transform
|
34 |
+
)
|
35 |
+
# create dataloaders
|
36 |
+
|
37 |
+
batch_size = 128
|
38 |
+
|
39 |
+
train_dataloader = DataLoader(training_data, batch_size=batch_size,shuffle=True)
|
40 |
+
test_dataloader = DataLoader(test_data, batch_size=batch_size)
|
41 |
+
|
42 |
+
|
43 |
+
for X, y in test_dataloader:
|
44 |
+
print(f"Shape of X [N,C,H,W]:{X.shape}")
|
45 |
+
print(f"Shape of y:{y.shape}{y.dtype}")
|
46 |
+
break
|
47 |
+
|
48 |
+
# size checking for loading images
|
49 |
+
def check_sizes(image_size, patch_size):
|
50 |
+
sqrt_num_patches, remainder = divmod(image_size, patch_size)
|
51 |
+
assert remainder == 0, "`image_size` must be divisibe by `patch_size`"
|
52 |
+
num_patches = sqrt_num_patches ** 2
|
53 |
+
return num_patches
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
# create model
|
58 |
+
# Get cpu or gpu device for training.
|
59 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
60 |
+
|
61 |
+
print(f"using {device} device")
|
62 |
+
|
63 |
+
# model definition
|
64 |
+
|
65 |
+
class ContextualizerNiNImageClassification(ContextualizerNiN):
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
image_size=32,
|
69 |
+
patch_size=4,
|
70 |
+
in_channels=3,
|
71 |
+
num_classes=10,
|
72 |
+
d_ffn=512,
|
73 |
+
d_model = 256,
|
74 |
+
num_tokens = 64,
|
75 |
+
num_layers=4,
|
76 |
+
dropout=0.5
|
77 |
+
):
|
78 |
+
num_patches = check_sizes(image_size, patch_size)
|
79 |
+
super().__init__(d_model,d_ffn,num_layers,dropout, num_tokens)
|
80 |
+
self.patcher = nn.Conv2d(
|
81 |
+
in_channels, d_model, kernel_size=patch_size, stride=patch_size
|
82 |
+
)
|
83 |
+
self.classifier = nn.Linear(d_model, num_classes)
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
|
87 |
+
patches = self.patcher(x)
|
88 |
+
batch_size, num_channels, _, _ = patches.shape
|
89 |
+
patches = patches.permute(0, 2, 3, 1)
|
90 |
+
patches = patches.view(batch_size, -1, num_channels)
|
91 |
+
embedding = self.model(patches)
|
92 |
+
embedding = embedding.mean(dim=1) # global average pooling
|
93 |
+
out = self.classifier(embedding)
|
94 |
+
return out
|
95 |
+
|
96 |
+
model = ContextualizerNiNImageClassification().to(device)
|
97 |
+
print(model)
|
98 |
+
|
99 |
+
# Optimizer
|
100 |
+
|
101 |
+
loss_fn = nn.CrossEntropyLoss()
|
102 |
+
optimizer = torch.optim.Adam(model.parameters(),lr=1e-3)
|
103 |
+
|
104 |
+
|
105 |
+
# Training Loop
|
106 |
+
|
107 |
+
def train(dataloader, model, loss_fn, optimizer):
|
108 |
+
size = len(dataloader.dataset)
|
109 |
+
num_batches = len(dataloader)
|
110 |
+
model.train()
|
111 |
+
train_loss = 0
|
112 |
+
correct = 0
|
113 |
+
for batch, (X,y) in enumerate(dataloader):
|
114 |
+
X, y = X.to(device), y.to(device)
|
115 |
+
|
116 |
+
#compute prediction error
|
117 |
+
pred = model(X)
|
118 |
+
loss = loss_fn(pred,y)
|
119 |
+
|
120 |
+
# backpropagation
|
121 |
+
optimizer.zero_grad()
|
122 |
+
loss.backward()
|
123 |
+
optimizer.step()
|
124 |
+
train_loss += loss.item()
|
125 |
+
_, labels = torch.max(pred.data, 1)
|
126 |
+
correct += labels.eq(y.data).type(torch.float).sum()
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
if batch % 100 == 0:
|
132 |
+
loss, current = loss.item(), batch * len(X)
|
133 |
+
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
|
134 |
+
|
135 |
+
train_loss /= num_batches
|
136 |
+
train_accuracy = 100. * correct.item() / size
|
137 |
+
print(train_accuracy)
|
138 |
+
return train_loss,train_accuracy
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
# Test loop
|
143 |
+
|
144 |
+
def test(dataloader, model, loss_fn):
|
145 |
+
size = len(dataloader.dataset)
|
146 |
+
num_batches = len(dataloader)
|
147 |
+
model.eval()
|
148 |
+
test_loss = 0
|
149 |
+
correct = 0
|
150 |
+
with torch.no_grad():
|
151 |
+
for X,y in dataloader:
|
152 |
+
X,y = X.to(device), y.to(device)
|
153 |
+
pred = model(X)
|
154 |
+
test_loss += loss_fn(pred, y).item()
|
155 |
+
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
|
156 |
+
test_loss /= num_batches
|
157 |
+
correct /= size
|
158 |
+
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
|
159 |
+
test_accuracy = 100*correct
|
160 |
+
return test_loss, test_accuracy
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
# apply train and test
|
165 |
+
|
166 |
+
logname = "/PATH/Contextualizer_NiN/Experiments_cifar10/logs_contextualizer/logs_cifar10.csv"
|
167 |
+
if not os.path.exists(logname):
|
168 |
+
with open(logname, 'w') as logfile:
|
169 |
+
logwriter = csv.writer(logfile, delimiter=',')
|
170 |
+
logwriter.writerow(['epoch', 'train loss', 'train acc',
|
171 |
+
'test loss', 'test acc'])
|
172 |
+
|
173 |
+
|
174 |
+
epochs = 100
|
175 |
+
for epoch in range(epochs):
|
176 |
+
print(f"Epoch {epoch+1}\n-----------------------------------")
|
177 |
+
train_loss, train_acc = train(train_dataloader, model, loss_fn, optimizer)
|
178 |
+
# learning rate scheduler
|
179 |
+
#if scheduler is not None:
|
180 |
+
# scheduler.step()
|
181 |
+
test_loss, test_acc = test(test_dataloader, model, loss_fn)
|
182 |
+
with open(logname, 'a') as logfile:
|
183 |
+
logwriter = csv.writer(logfile, delimiter=',')
|
184 |
+
logwriter.writerow([epoch+1, train_loss, train_acc,
|
185 |
+
test_loss, test_acc])
|
186 |
+
print("Done!")
|
187 |
+
|
188 |
+
# saving trained model
|
189 |
+
|
190 |
+
path = "/PATH/Contextualizer_NiN/Experiments_cifar10/weights_contextualizer"
|
191 |
+
model_name = "ContextualizerNiNImageClassification_cifar10"
|
192 |
+
torch.save(model.state_dict(), f"{path}/{model_name}.pth")
|
193 |
+
print(f"Saved Model State to {path}/{model_name}.pth ")
|
194 |
+
|