import torch from torch import nn class MemoryUnit(nn.Module): def __init__(self,dim): super().__init__() self.norm_token = nn.LayerNorm(dim) self.proj_1 = nn.Linear(dim,dim) self.proj_2 = nn.Linear(dim,dim) self.proj_3 = nn.Linear(dim,dim) def forward(self, x): x = self.norm_token(x) u, v = x, x u = self.proj_1(u) u = self.norm_token(u) v = self.proj_2(v) g = u * v x = self.proj_3(g) x = self.norm_token(x) return x class InteractionUnit(nn.Module): def __init__(self,dim,score_dim): super().__init__() self.norm_token = nn.LayerNorm(dim) self.norm_score = nn.LayerNorm(score_dim) def forward(self, x): x = self.norm_token(x) q,k,v = x,x,x score = torch.matmul(q, k.transpose(-1, -2)) interaction = self.norm_score(score) x = torch.matmul(interaction,v) x = self.norm_token(x) return x class InteractorBlock(nn.Module): def __init__(self, d_model, num_tokens): super().__init__() self.memory = MemoryUnit(d_model) self.interaction = InteractionUnit(d_model,num_tokens) def forward(self, x): residual = x x = self.interaction(x) x = x + residual residual = x x = self.memory(x) out = x + residual return out class Interactor(nn.Module): def __init__(self, d_model,num_tokens, num_layers): super().__init__() self.model = nn.Sequential( *[InteractorBlock(d_model,num_tokens) for _ in range(num_layers)] ) def forward(self, x): return self.model(x)