File size: 5,872 Bytes
5e6b20f
 
 
 
 
 
 
 
 
6a18f40
5e6b20f
 
 
 
 
 
 
 
 
 
6a18f40
5e6b20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a18f40
5e6b20f
 
 
6a18f40
5e6b20f
 
 
 
 
 
6a18f40
5e6b20f
 
 
 
 
 
6a18f40
5e6b20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import numpy as np
from torch import nn
from torch.nn import functional as F
from einops.layers.torch import Rearrange
import math





def default(val, default_val):
    return val if val is not None else default_val

def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor



class Residual(nn.Module):
    def __init__(self, fn):
        super().__init__()
        self.fn = fn
    def forward(self, x):
        return x + self.fn(x)

class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.fn = fn
        self.norm = nn.LayerNorm(dim)
    def forward(self, x):
        x = self.norm(x)
        return self.fn(x)

class GELU_(nn.Module):
    def forward(self, x):
        return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))

GELU = nn.GELU if hasattr(nn, 'GELU') else GELU_

class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout = 0., activation = None, glu = False):
        super().__init__()
        activation = default(activation, GELU)

        self.glu = glu
        self.w1 = nn.Linear(dim, hidden_dim * (2 if glu else 1))
        self.act = activation()
        self.dropout = nn.Dropout(dropout)
        self.w2 = nn.Linear(hidden_dim, dim)

    def forward(self, x, **kwargs):
        if not self.glu:
            x = self.w1(x)
            x = self.act(x)
        else:
            x, v = self.w1(x).chunk(2, dim=-1)
            x = self.act(x) * v

        x = self.dropout(x)
        x = self.w2(x)
        return x

class LinformerSelfAttention(nn.Module):
    def __init__(self, dim, seq_len, k = 16, heads = 4, dim_head = None, one_kv_head = False, share_kv = False, dropout = 0.):
        super().__init__()
        
        assert (dim % heads) == 0, 'dimension must be divisible by the number of heads'

        self.seq_len = seq_len
        self.k = k

        self.heads = heads

        dim_head = default(dim_head, dim // heads)
        self.dim_head = dim_head

        self.to_q = nn.Linear(dim, dim_head * heads, bias = False)

        kv_dim = dim_head if one_kv_head else (dim_head * heads)
        self.to_k = nn.Linear(dim, kv_dim, bias = False)
        self.proj_k = nn.Parameter(init_(torch.zeros(seq_len, k)))

        self.share_kv = share_kv
        if not share_kv:
            self.to_v = nn.Linear(dim, kv_dim, bias = False)
            self.proj_v = nn.Parameter(init_(torch.zeros(seq_len, k)))

        self.dropout = nn.Dropout(dropout)
        self.to_out = nn.Linear(dim_head * heads, dim)

    def forward(self, x, context = None, **kwargs):
        b, n, d, d_h, h, k = *x.shape, self.dim_head, self.heads, self.k

        kv_len = n if context is None else context.shape[1]
        assert kv_len == self.seq_len, f'the sequence length of the key / values must be {self.seq_len} - {kv_len} given'

        queries = self.to_q(x)

        proj_seq_len = lambda args: torch.einsum('bnd,nk->bkd', *args)

        kv_input = x if context is None else context

        keys = self.to_k(kv_input)
        values = self.to_v(kv_input) if not self.share_kv else keys

        kv_projs = (self.proj_k, self.proj_v if not self.share_kv else self.proj_k)

       

        keys, values = map(proj_seq_len, zip((keys, values), kv_projs))

        

        queries = queries.reshape(b, n, h, -1).transpose(1, 2)

        merge_key_values = lambda t: t.reshape(b, k, -1, d_h).transpose(1, 2).expand(-1, h, -1, -1)
        keys, values = map(merge_key_values, (keys, values))

        

        dots = torch.einsum('bhnd,bhkd->bhnk', queries, keys) * (d_h ** -0.5)
        attn = dots.softmax(dim=-1)
        attn = self.dropout(attn)
        out = torch.einsum('bhnk,bhkd->bhnd', attn, values)

       
        out = out.transpose(1, 2).reshape(b, n, -1)
        return self.to_out(out)







class LinformerBlock(nn.Module):
    def __init__(self, d_model, d_ffn, seq_len,dropout):
        super().__init__()
       
        self.norm = nn.LayerNorm(d_model) 
        self.Linformer_unit = LinformerSelfAttention(d_model, seq_len, k = 256, heads = 8, dim_head = None, one_kv_head = False, share_kv = False, dropout=dropout)            
        self.ffn = FeedForward(d_model,d_ffn,dropout)
    def forward(self, x):
        residual = x
        x = self.norm(x)
        x = self.Linformer_unit(x)   
        x = x + residual      
        residual = x
        x = self.norm(x)
        x = self.ffn(x)
        out = x + residual
        return out






class LinearizerGatingUnit(nn.Module):
    def __init__(self,d_model,d_ffn,seq_len,dropout):
        super().__init__()
        self.proj = nn.Linear(d_model,d_model)     
        self.Linz = LinformerBlock(
			   d_model, d_ffn, seq_len,dropout
			)

	
       

    def forward(self, x):
        u, v = x, x 
        u = self.proj(u)  
        v = self.Linz(v)
        out = u * v
        return out


class LinearizerBlock(nn.Module):
    def __init__(self, d_model,d_ffn,seq_len,dropout):
        super().__init__()
       
        self.norm = nn.LayerNorm(d_model)       
        self.lgu = LinearizerGatingUnit(d_model,d_ffn,seq_len,dropout)
        self.ffn = FeedForward(d_model,d_ffn,dropout)
    def forward(self, x):
        residual = x
        x = self.norm(x)
        x = self.lgu(x)   
        x = x + residual      
        residual = x
        x = self.norm(x)
        x = self.ffn(x)
        out = x + residual
        return out



class Linearizer(nn.Module):
    def __init__(self, d_model, d_ffn,seq_len, num_layers,dropout):
        super().__init__()
        
        self.model = nn.Sequential(
            *[LinearizerBlock(d_model,d_ffn,seq_len,dropout) for _ in range(num_layers)]
        )

    def forward(self, x):
       
        return self.model(x)