|
import torch |
|
import numpy as np |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from einops.layers.torch import Rearrange |
|
|
|
|
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, hidden_dim, dropout): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.Linear(dim, hidden_dim), |
|
nn.GELU(), |
|
nn.Dropout(dropout), |
|
nn.Linear(hidden_dim, dim), |
|
nn.Dropout(dropout) |
|
) |
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
|
|
class MixerBlock(nn.Module): |
|
|
|
def __init__(self, dim, num_patch, token_dim, channel_dim, dropout): |
|
super().__init__() |
|
|
|
self.token_mix = nn.Sequential( |
|
nn.LayerNorm(dim), |
|
Rearrange('b n d -> b d n'), |
|
FeedForward(num_patch, token_dim, dropout), |
|
Rearrange('b d n -> b n d') |
|
) |
|
|
|
self.channel_mix = nn.Sequential( |
|
nn.LayerNorm(dim), |
|
FeedForward(dim, channel_dim, dropout), |
|
) |
|
|
|
def forward(self, x): |
|
|
|
x = x + self.token_mix(x) |
|
|
|
x = x + self.channel_mix(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class MixerGatingUnit(nn.Module): |
|
def __init__(self,dim, seq_len, token_dim, channel_dim, dropout): |
|
super().__init__() |
|
self.Mixer = MixerBlock(dim, seq_len, token_dim, channel_dim, dropout) |
|
self.proj = nn.Linear(dim,dim) |
|
|
|
def forward(self, x): |
|
u, v = x, x |
|
u = self.proj(u) |
|
v = self.Mixer(v) |
|
out = u * v |
|
return out |
|
|
|
|
|
class NiNBlock(nn.Module): |
|
def __init__(self, d_model, d_ffn, seq_len,dropout): |
|
super().__init__() |
|
|
|
self.norm = nn.LayerNorm(d_model) |
|
self.mgu = MixerGatingUnit(d_model,seq_len,d_ffn,d_ffn,dropout) |
|
self.ffn = FeedForward(d_model,d_ffn,dropout) |
|
def forward(self, x): |
|
residual = x |
|
x = self.norm(x) |
|
x = self.mgu(x) |
|
x = x + residual |
|
residual = x |
|
x = self.norm(x) |
|
x = self.ffn(x) |
|
out = x + residual |
|
return out |
|
|
|
|
|
class NiNformer(nn.Module): |
|
def __init__(self, d_model, d_ffn, seq_len, num_layers,dropout): |
|
super().__init__() |
|
|
|
self.model = nn.Sequential( |
|
*[NiNBlock(d_model, d_ffn, seq_len,dropout) for _ in range(num_layers)] |
|
) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|