Normalizer / train.py
Abdullah-Nazhat's picture
Upload 2 files
589ece6 verified
raw
history blame
5.38 kB
import os
import csv
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Normalize, RandomCrop, RandomHorizontalFlip, Compose
from normalizer import Normalizer
transform = Compose([
RandomCrop(32, padding=4),
RandomHorizontalFlip(),
ToTensor(),
Normalize((0.5, 0.5,0.5),(0.5, 0.5,0.5))
])
training_data = datasets.CIFAR10(
root='data',
train=True,
download=True,
transform=transform
)
test_data = datasets.CIFAR10(
root='data',
train=False,
download=True,
transform=transform
)
batch_size = 128
train_dataloader = DataLoader(training_data, batch_size=batch_size,shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print(f"Shape of X [N,C,H,W]:{X.shape}")
print(f"Shape of y:{y.shape}{y.dtype}")
break
def check_sizes(image_size, patch_size):
sqrt_num_patches, remainder = divmod(image_size, patch_size)
assert remainder == 0, "`image_size` must be divisibe by `patch_size`"
num_patches = sqrt_num_patches ** 2
return num_patches
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"using {device} device")
class NormalizerImageClassification(Normalizer):
def __init__(
self,
image_size=32,
patch_size=4,
in_channels=3,
num_classes=10,
d_model = 256,
num_tokens = 64,
num_layers=4,
):
num_patches = check_sizes(image_size, patch_size)
super().__init__(d_model,num_tokens, num_layers)
self.patcher = nn.Conv2d(
in_channels, d_model, kernel_size=patch_size, stride=patch_size
)
self.classifier = nn.Linear(d_model, num_classes)
def forward(self, x):
patches = self.patcher(x)
batch_size, num_channels, _, _ = patches.shape
patches = patches.permute(0, 2, 3, 1)
patches = patches.view(batch_size, -1, num_channels)
embedding = self.model(patches)
embedding = embedding.mean(dim=1)
out = self.classifier(embedding)
return out
model = NormalizerImageClassification().to(device)
print(model)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),lr=1e-3)
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.train()
train_loss = 0
correct = 0
for batch, (X,y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred,y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
_, labels = torch.max(pred.data, 1)
correct += labels.eq(y.data).type(torch.float).sum()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
train_loss /= num_batches
train_accuracy = 100. * correct.item() / size
print(train_accuracy)
return train_loss,train_accuracy
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for X,y in dataloader:
X,y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
test_accuracy = 100*correct
return test_loss, test_accuracy
logname = "/home/abdullah/Desktop/Normalizer/Experiments_cifar10/logs_normalizer/logs_cifar10.csv"
if not os.path.exists(logname):
with open(logname, 'w') as logfile:
logwriter = csv.writer(logfile, delimiter=',')
logwriter.writerow(['epoch', 'train loss', 'train acc',
'test loss', 'test acc'])
epochs = 100
for epoch in range(epochs):
print(f"Epoch {epoch+1}\n-----------------------------------")
train_loss, train_acc = train(train_dataloader, model, loss_fn, optimizer)
test_loss, test_acc = test(test_dataloader, model, loss_fn)
with open(logname, 'a') as logfile:
logwriter = csv.writer(logfile, delimiter=',')
logwriter.writerow([epoch+1, train_loss, train_acc,
test_loss, test_acc])
print("Done!")
path = "/home/abdullah/Desktop/Normalizer/Experiments_cifar10/weights_normalizer"
model_name = "NormalizerImageClassification_cifar10"
torch.save(model.state_dict(), f"{path}/{model_name}.pth")
print(f"Saved Model State to {path}/{model_name}.pth ")