import torch from torch import nn class GatingUnit(nn.Module): def __init__(self,dim): super().__init__() self.proj_1 = nn.Linear(dim,dim) self.proj_2 = nn.Linear(dim,dim) self.proj_3 = nn.Linear(dim,dim) self.silu = nn.SiLU() def forward(self, x): u, v = x, x u = self.proj_1(u) u = self.silu(u) v = self.proj_2(v) g = u * v g = self.proj_3(g) out = g return out class NormalizerBlock(nn.Module): def __init__(self, d_model, num_tokens): super().__init__() self.norm_global = nn.LayerNorm(d_model * num_tokens) self.norm_local = nn.LayerNorm(d_model) self.gating = GatingUnit(d_model) def forward(self, x): residual = x dim0 = x.shape[0] dim1 = x.shape[1] dim2 = x.shape[2] x = x.reshape([dim0,dim1*dim2]) x = self.norm_global(x) x = x.reshape([dim0,dim1,dim2]) x = x + residual residual = x x = self.norm_local(x) x = self.gating(x) out = x + residual return out class Normalizer(nn.Module): def __init__(self, d_model,num_tokens, num_layers): super().__init__() self.model = nn.Sequential( *[NormalizerBlock(d_model,num_tokens) for _ in range(num_layers)] ) def forward(self, x): return self.model(x)