import torch from torch import nn class ActivatorGatingUnit(nn.Module): def __init__(self,dim): super().__init__() self.proj_1 = nn.Linear(dim,dim) self.proj_2 = nn.Linear(dim,dim) self.proj_3 = nn.Linear(dim,dim) self.gelu = nn.GELU() def forward(self, x): u, v = x, x u = self.proj_1(u) u = self.gelu(u) v = self.proj_2(v) g = u * v out = self.proj_3(g) return out class ActivatorBlock(nn.Module): def __init__(self, d_model): super().__init__() self.norm = nn.LayerNorm(d_model) self.actgu = ActivatorGatingUnit(d_model) def forward(self, x): residual = x x = self.norm(x) x = self.actgu(x) x = x + residual out = x return out class ACTIVATOR(nn.Module): def __init__(self, d_model, num_layers): super().__init__() self.model = nn.Sequential( *[ActivatorBlock(d_model) for _ in range(num_layers)] ) def forward(self, x): return self.model(x)