Abel-Mek commited on
Commit
beb83ff
1 Parent(s): 2c98275
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ vocab.txt filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - am
4
+ metrics:
5
+ - accuracy
6
+ - f1
7
+ library_name: transformers
8
+ pipeline_tag: text-classification
9
+ tags:
10
+ - Sentiment-Analysis
11
+ - Hate-Speech
12
+ - Finetuning-mBERT
13
+ ---
14
+
15
+
16
+
17
+ **<h1>Hate-Speech-Detection-in-Amharic-Language-mBERT</h1>**
18
+
19
+ This Hugging Face model card contains a machine learning model that uses fine-tuned mBERT to detect hate speech in Amharic language.
20
+ The model was fine-tuned using the Hugging Face Trainer API.
21
+
22
+ **<h1>Fine-Tuning</h1>**
23
+
24
+ This model was created by finetuning the mBERT model for the downstream task of Hate speech detection for the Amharic language.
25
+ The initial mBERT model used for finetuning is http://Davlan/bert-base-multilingual-cased-finetuned-amharic which was provided by Davlan on Huggingface.
26
+
27
+ **<h1>Usage</h1>**
28
+
29
+ You can use the model through the Hugging Face Transformers library, either by directly loading the model in your Python code
30
+ or by using the Hugging Face model hub.
31
+
32
+
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "amengemeda/amharic-hate-speech-detection-mBERT",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "problem_type": "single_label_classification",
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.30.1",
30
+ "type_vocab_size": 2,
31
+ "use_cache": true,
32
+ "vocab_size": 119547
33
+ }
34
+
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffef8b159b9d275f382b47b41da9eb5872c7a85abe0bfc75fa522074063c4559
3
+ size 711489909
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": false,
6
+ "mask_token": "[MASK]",
7
+ "model_max_length": 512,
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "strip_accents": null,
12
+ "tokenize_chinese_chars": true,
13
+ "tokenizer_class": "BertTokenizer",
14
+ "unk_token": "[UNK]"
15
+ }
vocab.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a67cd5c26510fdd7e81ec75b25ef433d25f23fe8f1f198c01fe17280627e5b3
3
+ size 1552337