AdamCodd commited on
Commit
92f8b29
·
verified ·
1 Parent(s): 9d2497b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - object-detection
5
+ - vision
6
+ ---
7
+
8
+ # Yolos-small-crowd
9
+
10
+ YOLOS model fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS).
11
+
12
+ ## Model description
13
+ This model has been finetuned on the following [crowd-detection dataset](https://universe.roboflow.com/institut-teknologi-nasional-bandung-mxgtc/crowd-detection-i75bl) with the following results on the test set:
14
+
15
+ ```
16
+ IoU metric: bbox
17
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.630
18
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.908
19
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.672
20
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
21
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.005
22
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.636
23
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.431
24
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.740
25
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.762
26
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
27
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.300
28
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.766
29
+ ```
30
+
31
+ ## How to use
32
+
33
+ ```python
34
+ from transformers import AutoImageProcessor, AutoModelForObjectDetection
35
+ import torch
36
+ from PIL import Image
37
+ import requests
38
+
39
+ url = "https://latestbollyholly.com/wp-content/uploads/2024/02/Jacob-Gooch.jpg"
40
+ image = Image.open(requests.get(url, stream=True).raw)
41
+ image_processor = AutoImageProcessor.from_pretrained("AdamCodd/yolos-small-crowd")
42
+ model = AutoModelForObjectDetection.from_pretrained("AdamCodd/yolos-small-crowd")
43
+ inputs = image_processor(images=image, return_tensors="pt")
44
+ outputs = model(**inputs)
45
+
46
+ # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
47
+ target_sizes = torch.tensor([image.size[::-1]])
48
+ results = image_processor.post_process_object_detection(outputs, threshold=0.7, target_sizes=target_sizes)[0]
49
+ for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
50
+ box = [round(i, 2) for i in box.tolist()]
51
+ print(
52
+ f"Detected {model.config.id2label[label.item()]} with confidence "
53
+ f"{round(score.item(), 3)} at location {box}"
54
+ )
55
+ ```
56
+
57
+ Refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/yolos) for more code examples.
58
+
59
+ ## Intended uses & limitations
60
+
61
+ This fine-tuned model performs best when detecting individuals who are relatively close to the viewpoint. As indicated by the metrics, it struggles to identify individuals farther away.
62
+
63
+ ### Training hyperparameters
64
+
65
+ The following hyperparameters were used during training:
66
+ - learning_rate: 3e-05
67
+ - train_batch_size: 1
68
+ - eval_batch_size: 1
69
+ - seed: 42
70
+ - optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08
71
+ - num_epochs: 5
72
+ - weight_decay: 1e-4
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.36.2
77
+ - pycocotools 2.0.7
78
+
79
+ If you want to support me, you can [here](https://ko-fi.com/adamcodd).