--- tags: - autotrain - text-classification base_model: FacebookAI/roberta-base widget: - text: I love AutoTrain license: apache-2.0 datasets: - AdamLucek/twittersentiment-llama-3.1-405B-labels language: - en pipeline_tag: text-classification library_name: transformers --- # Roberta-Base Trained on Llama 3.1 405B Twitter Sentiment Classification The [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) 125M Parameter language model trained on annotated twitter sentiment data from [meta-llama/Meta-Llama-3.1-405B](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B) for text classification. **Evaluation** Llama 3.1 405B Accuracy: 65.49% Fine Tuned Roberta Accuracy: 63.38% Essentially the same performance at **0.03%** of the parameters.\* \*Further eval definitely needed! ### Fine-tuning Data Description Data and expected label used in accuracy calculation comes from [mteb/tweet_sentiment_extraction](https://huggingface.co/datasets/mteb/tweet_sentiment_extraction) dataset. Annotations made using a subset of the tweet sentiment extraction dataset, removing blank texts and removing entries deemed innapropriate by Llama 3.1 405B's filter. Generated annotations using Fireworks API, which is expected to be hosting Llama 3.1 405B in FP8 accuracy. Final **train/test** split count ends at **4992/998**, available at [AdamLucek/twittersentiment-llama-3.1-405B-labels](https://huggingface.co/datasets/AdamLucek/twittersentiment-llama-3.1-405B-labels). # Using the Model ```python from transformers import pipeline # Create sentiment Analysis pipeline classifier = pipeline("sentiment-analysis", model="AdamLucek/roberta-llama3.1405B-twitter-sentiment") classifier("Want to get a Blackberry but can`t afford it . Just watching the telly and relaxing. Hard sesion tomorrow.") # Output: [{'label': 'neutral', 'score': 0.3881794810295105}] ``` ## Model Trained Using AutoTrain - Validation Metrics loss: 0.6081525683403015 f1_macro: 0.7293016589919367 f1_micro: 0.7567567567567568 f1_weighted: 0.7525753769969824 precision_macro: 0.7459781321674904 precision_micro: 0.7567567567567568 precision_weighted: 0.7607241180619724 recall_macro: 0.727181992488115 recall_micro: 0.7567567567567568 recall_weighted: 0.7567567567567568 accuracy: 0.7567567567567568