AdamOswald1
commited on
Commit
•
7fe3857
1
Parent(s):
e22d59d
Upload 5 files
Browse files- README.md +11 -7
- app.py +213 -394
- requirements (1).txt +27 -0
- requirements (2).txt +27 -0
- requirements.txt +19 -0
README.md
CHANGED
@@ -1,9 +1,13 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
- Fazzie/Teyvat
|
7 |
-
- Guizmus/AnimeChanStyle
|
8 |
-
- poloclub/diffusiondb
|
9 |
-
---
|
|
|
1 |
---
|
2 |
+
title: Finetuned Diffusion
|
3 |
+
emoji: 🪄🖼️
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: pink
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.18.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: true
|
10 |
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,164 +1,21 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import json
|
3 |
-
import shutil
|
4 |
-
import sqlite3
|
5 |
-
import subprocess
|
6 |
-
import sys
|
7 |
-
sys.path.append('src/blip')
|
8 |
-
sys.path.append('src/clip')
|
9 |
-
import clip
|
10 |
-
import hashlib
|
11 |
-
import math
|
12 |
-
import numpy as np
|
13 |
-
import pickle
|
14 |
-
import torchvision.transforms as T
|
15 |
-
import torchvision.transforms.functional as TF
|
16 |
-
import requests
|
17 |
-
import wget
|
18 |
-
import gradio as grad, random, re
|
19 |
import torch
|
20 |
-
import
|
21 |
import utils
|
22 |
-
import
|
23 |
-
import re
|
24 |
-
import base64
|
25 |
-
import subprocess
|
26 |
-
import argparse
|
27 |
-
import logging
|
28 |
-
import streamlit as st
|
29 |
-
import pandas as pd
|
30 |
-
import datasets
|
31 |
-
import yaml
|
32 |
-
import textwrap
|
33 |
-
import tornado
|
34 |
import time
|
35 |
-
import
|
36 |
-
|
37 |
-
from diffusers import StableDiffusionPipeline
|
38 |
-
from transformers import pipeline, set_seed
|
39 |
-
from huggingface_hub import HfApi
|
40 |
-
from huggingface_hub import hf_hub_download
|
41 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
42 |
-
from diffusers import AutoencoderKL, UNet2DConditionModel
|
43 |
-
from diffusers import StableDiffusionImg2ImgPipeline
|
44 |
-
from PIL import Image
|
45 |
-
from datasets import load_dataset
|
46 |
-
from share_btn import community_icon_html, loading_icon_html, share_js
|
47 |
-
from io import BytesIO
|
48 |
-
from models.blip import blip_decoder
|
49 |
-
from torch import nn
|
50 |
-
from torch.nn import functional as F
|
51 |
-
from tqdm import tqdm
|
52 |
-
from pathlib import Path
|
53 |
-
from flask import Flask, request, jsonify, g
|
54 |
-
from flask_expects_json import expects_json
|
55 |
-
from flask_cors import CORS
|
56 |
-
from huggingface_hub import Repository
|
57 |
-
from flask_apscheduler import APScheduler
|
58 |
-
from jsonschema import ValidationError
|
59 |
-
from os import mkdir
|
60 |
-
from os.path import isdir
|
61 |
-
from colorthief import ColorThief
|
62 |
-
from data_measurements.dataset_statistics import DatasetStatisticsCacheClass as dmt_cls
|
63 |
-
from utils import dataset_utils
|
64 |
-
from utils import streamlit_utils as st_utils
|
65 |
-
from dataclasses import asdict
|
66 |
-
from .transfer import transfer_color
|
67 |
-
from .utils import convert_bytes_to_pil
|
68 |
-
from diffusers import DiffusionPipeline
|
69 |
-
from huggingface_hub.inference_api import InferenceApi
|
70 |
-
from huggingface_hub import login
|
71 |
-
from datasets import load_dataset
|
72 |
-
#from torch import autocast
|
73 |
-
#from diffusers import StableDiffusionPipeline
|
74 |
-
#from io import BytesIO
|
75 |
-
#import base64
|
76 |
-
#import torch
|
77 |
-
|
78 |
-
is_colab = utils.is_google_colab()
|
79 |
-
|
80 |
-
from share_btn import community_icon_html, loading_icon_html, share_js
|
81 |
-
|
82 |
-
from huggingface_hub import login
|
83 |
-
login()
|
84 |
-
|
85 |
-
from huggingface_hub.inference_api import InferenceApi
|
86 |
-
inference = InferenceApi(repo_id="bert-base-uncased", token=API_TOKEN)
|
87 |
-
|
88 |
-
from datasets import load_dataset
|
89 |
-
|
90 |
-
dataset = load_dataset("Fazzie/Teyvat")
|
91 |
-
|
92 |
-
from datasets import load_dataset
|
93 |
-
|
94 |
-
dataset = load_dataset("Guizmus/AnimeChanStyle")
|
95 |
-
|
96 |
-
from datasets import load_dataset
|
97 |
-
|
98 |
-
dataset = load_dataset("poloclub/diffusiondb")
|
99 |
-
|
100 |
-
from datasets import load_dataset
|
101 |
-
|
102 |
-
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
|
103 |
-
|
104 |
-
from datasets import load_dataset
|
105 |
-
dataset = load_dataset("Fazzie/Teyvat")
|
106 |
-
from datasets import load_dataset
|
107 |
-
dataset = load_dataset("Guizmus/AnimeChanStyle")
|
108 |
-
from datasets import load_dataset
|
109 |
-
dataset = load_dataset("poloclub/diffusiondb")
|
110 |
-
from datasets import load_dataset
|
111 |
-
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
|
112 |
-
|
113 |
-
from datasets import load_dataset
|
114 |
-
dataset = load_dataset("Fazzie/Teyvat")
|
115 |
-
|
116 |
-
from datasets import load_dataset
|
117 |
-
dataset = load_dataset("Guizmus/AnimeChanStyle")
|
118 |
-
|
119 |
-
from datasets import load_dataset
|
120 |
-
dataset = load_dataset("poloclub/diffusiondb")
|
121 |
-
|
122 |
-
from datasets import load_dataset
|
123 |
-
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
|
124 |
-
|
125 |
-
|
126 |
-
dataset = load_dataset("Fazzie/Teyvat")
|
127 |
-
|
128 |
-
|
129 |
-
dataset = load_dataset("Guizmus/AnimeChanStyle")
|
130 |
-
|
131 |
-
|
132 |
-
dataset = load_dataset("poloclub/diffusiondb")
|
133 |
-
|
134 |
-
|
135 |
-
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
|
136 |
-
|
137 |
-
dataset = load_dataset("Fazzie/Teyvat")
|
138 |
-
dataset = load_dataset("Guizmus/AnimeChanStyle")
|
139 |
-
dataset = load_dataset("poloclub/diffusiondb")
|
140 |
-
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
|
141 |
-
|
142 |
-
dataset = load_dataset("Fazzie/Teyvat")
|
143 |
|
144 |
-
dataset = load_dataset("Guizmus/AnimeChanStyle")
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
sys.path.append('src/blip')
|
151 |
-
sys.path.append('src/clip')
|
152 |
-
|
153 |
-
pipeline = DiffusionPipeline.from_pretrained("flax/waifu-diffusion")
|
154 |
-
pipeline = DiffusionPipeline.from_pretrained("flax/Cyberpunk-Anime-Diffusion")
|
155 |
-
pipeline = DiffusionPipeline.from_pretrained("technillogue/waifu-diffusion")
|
156 |
-
pipeline = DiffusionPipeline.from_pretrained("svjack/Stable-Diffusion-Pokemon-en")
|
157 |
-
pipeline = DiffusionPipeline.from_pretrained("AdamOswald1/Idk")
|
158 |
-
pipeline = DiffusionPipeline.from_pretrained("katakana/2D-Mix")
|
159 |
|
160 |
class Model:
|
161 |
-
def __init__(self, name, path, prefix):
|
162 |
self.name = name
|
163 |
self.path = path
|
164 |
self.prefix = prefix
|
@@ -166,179 +23,36 @@ class Model:
|
|
166 |
self.pipe_i2i = None
|
167 |
|
168 |
models = [
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
Model("Genshin", "Eppinette/Mona", "Mona"),
|
195 |
-
Model("Genshin", "Eppinette/Mona", "Mona Woman"),
|
196 |
-
Model("Genshin", "Eppinette/Mona", "Mona Genshin"),
|
197 |
-
Model("Space Machine", "rabidgremlin/sd-db-epic-space-machine", "EpicSpaceMachine"),
|
198 |
-
Model("Spacecraft", "rabidgremlin/sd-db-epic-space-machine", "EpicSpaceMachine"),
|
199 |
-
Model("TARDIS", "Guizmus/Tardisfusion", "Classic Tardis style"),
|
200 |
-
Model("TARDIS", "Guizmus/Tardisfusion", "Modern Tardis style"),
|
201 |
-
Model("TARDIS", "Guizmus/Tardisfusion", "Tardis Box style"),
|
202 |
-
Model("Spacecraft", "Guizmus/Tardisfusion", "Classic Tardis style"),
|
203 |
-
Model("Spacecraft", "Guizmus/Tardisfusion", "Modern Tardis style"),
|
204 |
-
Model("Spacecraft", "Guizmus/Tardisfusion", "Tardis Box style"),
|
205 |
-
Model("CLIP", "EleutherAI/clip-guided-diffusion", "CLIP"),
|
206 |
-
Model("Face Swap", "felixrosberg/face-swap", "faceswap"),
|
207 |
-
Model("Face Swap", "felixrosberg/face-swap", "faceswap with"),
|
208 |
-
Model("Face Swap", "felixrosberg/face-swap", "faceswapped"),
|
209 |
-
Model("Face Swap", "felixrosberg/face-swap", "faceswapped with"),
|
210 |
-
Model("Face Swap", "felixrosberg/face-swap", "face on"),
|
211 |
-
Model("Waifu", "Fampai/lumine_genshin_impact", "lumine_genshin"),
|
212 |
-
Model("Waifu", "Fampai/lumine_genshin_impact", "lumine"),
|
213 |
-
Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine Genshin"),
|
214 |
-
Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine_genshin"),
|
215 |
-
Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine_Genshin"),
|
216 |
-
Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine"),
|
217 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine_genshin"),
|
218 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine_Genshin"),
|
219 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine"),
|
220 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine Genshin"),
|
221 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "lumine"),
|
222 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Ganyu"),
|
223 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Woman"),
|
224 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Genshin"),
|
225 |
-
Model("Waifu", "sd-concepts-library/ganyu-genshin-impact", "Ganyu"),
|
226 |
-
Model("Waifu", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Woman"),
|
227 |
-
Model("Waifu", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Genshin"),
|
228 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "raiden_ei"),
|
229 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden Ei"),
|
230 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "Ei Genshin"),
|
231 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden Genshin"),
|
232 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden_Genshin"),
|
233 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "Ei_Genshin"),
|
234 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden"),
|
235 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "Ei"),
|
236 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden Ei"),
|
237 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "raiden_ei"),
|
238 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden"),
|
239 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden Genshin"),
|
240 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Ei Genshin"),
|
241 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden_Genshin"),
|
242 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Ei_Genshin"),
|
243 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Ei"),
|
244 |
-
Model("Waifu", "Fampai/hutao_genshin_impact", "hutao_genshin"),
|
245 |
-
Model("Waifu", "Fampai/hutao_genshin_impact", "HuTao_Genshin"),
|
246 |
-
Model("Waifu", "Fampai/hutao_genshin_impact", "HuTao Genshin"),
|
247 |
-
Model("Waifu", "Fampai/hutao_genshin_impact", "HuTao"),
|
248 |
-
Model("Waifu", "Fampai/hutao_genshin_impact", "hutao_genshin"),
|
249 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "hutao_genshin"),
|
250 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "HuTao_Genshin"),
|
251 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "HuTao Genshin"),
|
252 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "HuTao"),
|
253 |
-
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Female"),
|
254 |
-
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "female"),
|
255 |
-
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Woman"),
|
256 |
-
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "woman"),
|
257 |
-
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Girl"),
|
258 |
-
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "girl"),
|
259 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "Female"),
|
260 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "female"),
|
261 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "Woman"),
|
262 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "woman"),
|
263 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "Girl"),
|
264 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "girl"),
|
265 |
-
Model("Genshin", "Eppinette/Mona", "Female"),
|
266 |
-
Model("Genshin", "Eppinette/Mona", "female"),
|
267 |
-
Model("Genshin", "Eppinette/Mona", "Woman"),
|
268 |
-
Model("Genshin", "Eppinette/Mona", "woman"),
|
269 |
-
Model("Genshin", "Eppinette/Mona", "Girl"),
|
270 |
-
Model("Genshin", "Eppinette/Mona", "girl"),
|
271 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Female"),
|
272 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "female"),
|
273 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Woman"),
|
274 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "woman"),
|
275 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Girl"),
|
276 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "girl"),
|
277 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Female"),
|
278 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "female"),
|
279 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Woman"),
|
280 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "woman"),
|
281 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Girl"),
|
282 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "girl"),
|
283 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "Female"),
|
284 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "female"),
|
285 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "Woman"),
|
286 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "woman"),
|
287 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "Girl"),
|
288 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "girl"),
|
289 |
-
Model("Waifu", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Genshin"),
|
290 |
-
Model("Waifu", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Genshin Impact"),
|
291 |
-
Model("Genshin", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", ""),
|
292 |
-
Model("Waifu", "crumb/genshin-stable-inversion", "Genshin"),
|
293 |
-
Model("Waifu", "crumb/genshin-stable-inversion", "Genshin Impact"),
|
294 |
-
Model("Genshin", "crumb/genshin-stable-inversion", ""),
|
295 |
-
Model("Waifu", "yuiqena/GenshinImpact", "Genshin"),
|
296 |
-
Model("Waifu", "yuiqena/GenshinImpact", "Genshin Impact"),
|
297 |
-
Model("Genshin", "yuiqena/GenshinImpact", ""),
|
298 |
-
Model("Waifu", "hakurei/waifu-diffusion, flax/waifu-diffusion, technillogue/waifu-diffusion, Guizmus/AnimeChanStyle, katakana/2D-Mix", ""),
|
299 |
-
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers, svjack/Stable-Diffusion-Pokemon-en", "pokemon style"),
|
300 |
-
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers, svjack/Stable-Diffusion-Pokemon-en", ""),
|
301 |
-
Model("Test", "AdamoOswald1/Idk", ""),
|
302 |
-
Model("Anime", "Guizmus/AnimeChanStyle", "AnimeChan Style"),
|
303 |
-
Model("Genshin", "Guizmus/AnimeChanStyle", "AnimeChan Style"),
|
304 |
-
Model("Waifu", "Guizmus/AnimeChanStyle", "AnimeChan Style"),
|
305 |
-
Model("Waifu", "Guizmus/AnimeChanStyle", "Genshin"),
|
306 |
-
Model("Waifu", "Guizmus/AnimeChanStyle", "Genshin Impact"),
|
307 |
-
Model("Genshin", "Guizmus/AnimeChanStyle", ""),
|
308 |
-
Model("Anime", "Guizmus/AnimeChanStyle", ""),
|
309 |
-
Model("Waifu", "Guizmus/AnimeChanStyle", ""),
|
310 |
-
Model("Anime", "Guizmus/AnimeChanStyle, katakana/2D-Mix", ""),
|
311 |
-
Model("Anime", "katakana/2D-Mix", "2D-Mix"),
|
312 |
-
Model("Genshin", "katakana/2D-Mix", "2D-Mix"),
|
313 |
-
Model("Waifu", "katakana/2D-Mix", "2D-Mix"),
|
314 |
-
Model("Waifu", "katakana/2D-Mix", "Genshin"),
|
315 |
-
Model("Waifu", "katakana/2D-Mix", "Genshin Impact"),
|
316 |
-
Model("Genshin", "katakana/2D-Mix", ""),
|
317 |
-
Model("Anime", "katakana/2D-Mix", ""),
|
318 |
-
Model("Waifu", "katakana/2D-Mix", ""),
|
319 |
-
Model("Beeple", "riccardogiorato/beeple-diffusion", "beeple style "),
|
320 |
-
Model("Avatar", "riccardogiorato/avatar-diffusion", "avatartwow style "),
|
321 |
-
Model("Poolsuite", "prompthero/poolsuite", "poolsuite style ")
|
322 |
]
|
323 |
-
# Model("Beksinski", "s3nh/beksinski-style-stable-diffusion", "beksinski style "),
|
324 |
-
# Model("Guohua", "Langboat/Guohua-Diffusion", "guohua style ")
|
325 |
-
|
326 |
-
scheduler = DPMSolverMultistepScheduler(
|
327 |
-
beta_start=0.00085,
|
328 |
-
beta_end=0.012,
|
329 |
-
beta_schedule="scaled_linear",
|
330 |
-
num_train_timesteps=1000,
|
331 |
-
trained_betas=None,
|
332 |
-
predict_epsilon=True,
|
333 |
-
thresholding=False,
|
334 |
-
algorithm_type="dpmsolver++",
|
335 |
-
solver_type="midpoint",
|
336 |
-
lower_order_final=True,
|
337 |
-
)
|
338 |
|
339 |
custom_model = None
|
340 |
if is_colab:
|
341 |
-
models.insert(0, Model("Custom model"
|
342 |
custom_model = models[0]
|
343 |
|
344 |
last_mode = "txt2img"
|
@@ -346,41 +60,61 @@ current_model = models[1] if is_colab else models[0]
|
|
346 |
current_model_path = current_model.path
|
347 |
|
348 |
if is_colab:
|
349 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
|
364 |
-
for model in models:
|
365 |
-
try:
|
366 |
-
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
|
367 |
-
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
368 |
-
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
369 |
-
except:
|
370 |
-
models.remove(model)
|
371 |
-
pipe = models[0].pipe_t2i
|
372 |
-
|
373 |
if torch.cuda.is_available():
|
374 |
pipe = pipe.to("cuda")
|
|
|
375 |
|
376 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
def custom_model_changed(path):
|
379 |
models[0].path = path
|
380 |
global current_model
|
381 |
current_model = models[0]
|
382 |
|
383 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
global current_model
|
386 |
for model in models:
|
@@ -388,14 +122,23 @@ def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0
|
|
388 |
current_model = model
|
389 |
model_path = current_model.path
|
390 |
|
391 |
-
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
|
|
|
|
|
|
|
|
392 |
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
|
|
|
|
|
|
397 |
|
398 |
-
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator
|
|
|
|
|
399 |
|
400 |
global last_mode
|
401 |
global pipe
|
@@ -403,29 +146,48 @@ def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, g
|
|
403 |
if model_path != current_model_path or last_mode != "txt2img":
|
404 |
current_model_path = model_path
|
405 |
|
|
|
|
|
406 |
if is_colab or current_model == custom_model:
|
407 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
408 |
else:
|
409 |
-
pipe.
|
410 |
-
|
|
|
|
|
|
|
|
|
|
|
411 |
|
412 |
if torch.cuda.is_available():
|
413 |
pipe = pipe.to("cuda")
|
|
|
414 |
last_mode = "txt2img"
|
415 |
|
416 |
prompt = current_model.prefix + prompt
|
417 |
result = pipe(
|
418 |
prompt,
|
419 |
negative_prompt = neg_prompt,
|
420 |
-
|
421 |
num_inference_steps = int(steps),
|
422 |
guidance_scale = guidance,
|
423 |
width = width,
|
424 |
height = height,
|
425 |
-
generator = generator
|
426 |
-
|
427 |
|
428 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
|
430 |
global last_mode
|
431 |
global pipe
|
@@ -433,14 +195,27 @@ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, w
|
|
433 |
if model_path != current_model_path or last_mode != "img2img":
|
434 |
current_model_path = model_path
|
435 |
|
|
|
|
|
436 |
if is_colab or current_model == custom_model:
|
437 |
-
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
438 |
else:
|
439 |
-
pipe.
|
440 |
-
|
|
|
|
|
|
|
|
|
|
|
441 |
|
442 |
if torch.cuda.is_available():
|
443 |
pipe = pipe.to("cuda")
|
|
|
444 |
last_mode = "img2img"
|
445 |
|
446 |
prompt = current_model.prefix + prompt
|
@@ -449,32 +224,48 @@ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, w
|
|
449 |
result = pipe(
|
450 |
prompt,
|
451 |
negative_prompt = neg_prompt,
|
452 |
-
|
453 |
-
|
454 |
num_inference_steps = int(steps),
|
455 |
strength = strength,
|
456 |
guidance_scale = guidance,
|
457 |
-
width = width,
|
458 |
-
height = height,
|
459 |
-
generator = generator
|
|
|
|
|
|
|
460 |
|
461 |
-
|
462 |
-
|
463 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
464 |
gr.HTML(
|
465 |
f"""
|
466 |
<div class="finetuned-diffusion-div">
|
467 |
<div>
|
468 |
-
<h1>
|
469 |
</div>
|
470 |
<p>
|
471 |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
Diffusers 🧨 SD model hosted on HuggingFace 🤗.
|
476 |
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
|
477 |
</p>
|
|
|
|
|
478 |
</div>
|
479 |
"""
|
480 |
)
|
@@ -492,25 +283,26 @@ with gr.Blocks(css=css) as demo:
|
|
492 |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
493 |
|
494 |
|
495 |
-
image_out = gr.Image(height=512)
|
496 |
-
|
497 |
-
|
498 |
-
|
|
|
499 |
|
500 |
with gr.Column(scale=45):
|
501 |
with gr.Tab("Options"):
|
502 |
with gr.Group():
|
503 |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
504 |
|
505 |
-
|
506 |
|
507 |
with gr.Row():
|
508 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
509 |
-
steps = gr.Slider(label="Steps", value=
|
510 |
|
511 |
with gr.Row():
|
512 |
-
width = gr.Slider(label="Width", value=512, minimum=64, maximum=
|
513 |
-
height = gr.Slider(label="Height", value=512, minimum=64, maximum=
|
514 |
|
515 |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
516 |
|
@@ -520,14 +312,41 @@ with gr.Blocks(css=css) as demo:
|
|
520 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
521 |
|
522 |
if is_colab:
|
523 |
-
|
524 |
-
|
525 |
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
526 |
-
|
527 |
-
|
528 |
-
prompt
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
+
from PIL import Image
|
5 |
import utils
|
6 |
+
import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import time
|
8 |
+
import psutil
|
9 |
+
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
+
start_time = time.time()
|
13 |
+
is_colab = utils.is_google_colab()
|
14 |
+
state = None
|
15 |
+
current_steps = 25
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
class Model:
|
18 |
+
def __init__(self, name, path="", prefix=""):
|
19 |
self.name = name
|
20 |
self.path = path
|
21 |
self.prefix = prefix
|
|
|
23 |
self.pipe_i2i = None
|
24 |
|
25 |
models = [
|
26 |
+
Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
|
27 |
+
Model("Dreamlike Diffusion 1.0", "dreamlike-art/dreamlike-diffusion-1.0", "dreamlikeart "),
|
28 |
+
Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
|
29 |
+
Model("Anything V3", "Linaqruf/anything-v3.0", ""),
|
30 |
+
Model("Modern Disney", "nitrosocke/mo-di-diffusion", "modern disney style "),
|
31 |
+
Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style "),
|
32 |
+
Model("Loving Vincent (Van Gogh)", "dallinmackay/Van-Gogh-diffusion", "lvngvncnt "),
|
33 |
+
Model("Wavyfusion", "wavymulder/wavyfusion", "wa-vy style "),
|
34 |
+
Model("Analog Diffusion", "wavymulder/Analog-Diffusion", "analog style "),
|
35 |
+
Model("Redshift renderer (Cinema4D)", "nitrosocke/redshift-diffusion", "redshift style "),
|
36 |
+
Model("Midjourney v4 style", "prompthero/midjourney-v4-diffusion", "mdjrny-v4 style "),
|
37 |
+
Model("Waifu", "hakurei/waifu-diffusion"),
|
38 |
+
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
|
39 |
+
Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
|
40 |
+
Model("TrinArt v2", "naclbit/trinart_stable_diffusion_v2"),
|
41 |
+
Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
|
42 |
+
Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "),
|
43 |
+
Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy "),
|
44 |
+
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers"),
|
45 |
+
Model("Pony Diffusion", "AstraliteHeart/pony-diffusion"),
|
46 |
+
Model("Robo Diffusion", "nousr/robo-diffusion"),
|
47 |
+
Model("Epic Diffusion", "johnslegers/epic-diffusion"),
|
48 |
+
Model("Modern Era TARDIS Interior", "Guizmus/Tardisfusion", "Modern Tardis style"),
|
49 |
+
Model("Classic Era TARDIS Interior", "Guizmus/Tardisfusion", "Classic Tardis style"),
|
50 |
+
Model("Cyber-Genshin", "AdamOswald1/Cyberpunk-Anime-Diffusion_with_support_for_Gen-Imp_characters", "Teyvat, Teyvat Style, cyberware_style, m_cyberware, Cyberware, Cyberware style, m_cyberware style, cyberware style, dgs illustration style, genshin impact style, ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
custom_model = None
|
54 |
if is_colab:
|
55 |
+
models.insert(0, Model("Custom model"))
|
56 |
custom_model = models[0]
|
57 |
|
58 |
last_mode = "txt2img"
|
|
|
60 |
current_model_path = current_model.path
|
61 |
|
62 |
if is_colab:
|
63 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
64 |
+
current_model.path,
|
65 |
+
torch_dtype=torch.float16,
|
66 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
67 |
+
safety_checker=lambda images, clip_input: (images, False)
|
68 |
+
)
|
69 |
+
|
70 |
+
else:
|
71 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
72 |
+
current_model.path,
|
73 |
+
torch_dtype=torch.float16,
|
74 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
|
75 |
+
)
|
76 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
if torch.cuda.is_available():
|
78 |
pipe = pipe.to("cuda")
|
79 |
+
pipe.enable_xformers_memory_efficient_attention()
|
80 |
|
81 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
82 |
|
83 |
+
def error_str(error, title="Error"):
|
84 |
+
return f"""#### {title}
|
85 |
+
{error}""" if error else ""
|
86 |
+
|
87 |
+
def update_state(new_state):
|
88 |
+
global state
|
89 |
+
state = new_state
|
90 |
+
|
91 |
+
def update_state_info(old_state):
|
92 |
+
if state and state != old_state:
|
93 |
+
return gr.update(value=state)
|
94 |
+
|
95 |
def custom_model_changed(path):
|
96 |
models[0].path = path
|
97 |
global current_model
|
98 |
current_model = models[0]
|
99 |
|
100 |
+
def on_model_change(model_name):
|
101 |
+
|
102 |
+
prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
|
103 |
+
|
104 |
+
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
|
105 |
+
|
106 |
+
def on_steps_change(steps):
|
107 |
+
global current_steps
|
108 |
+
current_steps = steps
|
109 |
+
|
110 |
+
def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
|
111 |
+
update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")
|
112 |
+
|
113 |
+
def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
114 |
+
|
115 |
+
update_state(" ")
|
116 |
+
|
117 |
+
print(psutil.virtual_memory()) # print memory usage
|
118 |
|
119 |
global current_model
|
120 |
for model in models:
|
|
|
122 |
current_model = model
|
123 |
model_path = current_model.path
|
124 |
|
125 |
+
# generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
126 |
+
if seed == 0:
|
127 |
+
seed = random.randint(0, 2147483647)
|
128 |
+
|
129 |
+
generator = torch.Generator('cuda').manual_seed(seed)
|
130 |
|
131 |
+
try:
|
132 |
+
if img is not None:
|
133 |
+
return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
134 |
+
else:
|
135 |
+
return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
136 |
+
except Exception as e:
|
137 |
+
return None, error_str(e)
|
138 |
|
139 |
+
def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):
|
140 |
+
|
141 |
+
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
|
142 |
|
143 |
global last_mode
|
144 |
global pipe
|
|
|
146 |
if model_path != current_model_path or last_mode != "txt2img":
|
147 |
current_model_path = model_path
|
148 |
|
149 |
+
update_state(f"Loading {current_model.name} text-to-image model...")
|
150 |
+
|
151 |
if is_colab or current_model == custom_model:
|
152 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
153 |
+
current_model_path,
|
154 |
+
torch_dtype=torch.float16,
|
155 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
156 |
+
safety_checker=lambda images, clip_input: (images, False)
|
157 |
+
)
|
158 |
else:
|
159 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
160 |
+
current_model_path,
|
161 |
+
torch_dtype=torch.float16,
|
162 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
|
163 |
+
)
|
164 |
+
# pipe = pipe.to("cpu")
|
165 |
+
# pipe = current_model.pipe_t2i
|
166 |
|
167 |
if torch.cuda.is_available():
|
168 |
pipe = pipe.to("cuda")
|
169 |
+
pipe.enable_xformers_memory_efficient_attention()
|
170 |
last_mode = "txt2img"
|
171 |
|
172 |
prompt = current_model.prefix + prompt
|
173 |
result = pipe(
|
174 |
prompt,
|
175 |
negative_prompt = neg_prompt,
|
176 |
+
num_images_per_prompt=n_images,
|
177 |
num_inference_steps = int(steps),
|
178 |
guidance_scale = guidance,
|
179 |
width = width,
|
180 |
height = height,
|
181 |
+
generator = generator,
|
182 |
+
callback=pipe_callback)
|
183 |
|
184 |
+
# update_state(f"Done. Seed: {seed}")
|
185 |
+
|
186 |
+
return replace_nsfw_images(result)
|
187 |
+
|
188 |
+
def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
|
189 |
+
|
190 |
+
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
|
191 |
|
192 |
global last_mode
|
193 |
global pipe
|
|
|
195 |
if model_path != current_model_path or last_mode != "img2img":
|
196 |
current_model_path = model_path
|
197 |
|
198 |
+
update_state(f"Loading {current_model.name} image-to-image model...")
|
199 |
+
|
200 |
if is_colab or current_model == custom_model:
|
201 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
202 |
+
current_model_path,
|
203 |
+
torch_dtype=torch.float16,
|
204 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
205 |
+
safety_checker=lambda images, clip_input: (images, False)
|
206 |
+
)
|
207 |
else:
|
208 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
209 |
+
current_model_path,
|
210 |
+
torch_dtype=torch.float16,
|
211 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
|
212 |
+
)
|
213 |
+
# pipe = pipe.to("cpu")
|
214 |
+
# pipe = current_model.pipe_i2i
|
215 |
|
216 |
if torch.cuda.is_available():
|
217 |
pipe = pipe.to("cuda")
|
218 |
+
pipe.enable_xformers_memory_efficient_attention()
|
219 |
last_mode = "img2img"
|
220 |
|
221 |
prompt = current_model.prefix + prompt
|
|
|
224 |
result = pipe(
|
225 |
prompt,
|
226 |
negative_prompt = neg_prompt,
|
227 |
+
num_images_per_prompt=n_images,
|
228 |
+
image = img,
|
229 |
num_inference_steps = int(steps),
|
230 |
strength = strength,
|
231 |
guidance_scale = guidance,
|
232 |
+
# width = width,
|
233 |
+
# height = height,
|
234 |
+
generator = generator,
|
235 |
+
callback=pipe_callback)
|
236 |
+
|
237 |
+
# update_state(f"Done. Seed: {seed}")
|
238 |
|
239 |
+
return replace_nsfw_images(result)
|
240 |
+
|
241 |
+
def replace_nsfw_images(results):
|
242 |
+
|
243 |
+
if is_colab:
|
244 |
+
return results.images
|
245 |
+
|
246 |
+
for i in range(len(results.images)):
|
247 |
+
if results.nsfw_content_detected[i]:
|
248 |
+
results.images[i] = Image.open("nsfw.png")
|
249 |
+
return results.images
|
250 |
+
|
251 |
+
# css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
252 |
+
# """
|
253 |
+
with gr.Blocks(css="style.css") as demo:
|
254 |
gr.HTML(
|
255 |
f"""
|
256 |
<div class="finetuned-diffusion-div">
|
257 |
<div>
|
258 |
+
<h1>Finetuned Diffusion</h1>
|
259 |
</div>
|
260 |
<p>
|
261 |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
|
262 |
+
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spider-Verse</a>, <a href="https://huggingface.co/nitrosocke/mo-di-diffusion">Modern Disney</a>, <a href="https://huggingface.co/nitrosocke/classic-anim-diffusion">Classic Disney</a>, <a href="https://huggingface.co/dallinmackay/Van-Gogh-diffusion">Loving Vincent (Van Gogh)</a>, <a href="https://huggingface.co/nitrosocke/redshift-diffusion">Redshift renderer (Cinema4D)</a>, <a href="https://huggingface.co/prompthero/midjourney-v4-diffusion">Midjourney v4 style</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokémon</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony Diffusion</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo Diffusion</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>, <a href="https://huggingface.co/dallinmackay/Tron-Legacy-diffusion">Tron Legacy</a>, <a href="https://huggingface.co/Fictiverse/Stable_Diffusion_BalloonArt_Model">Balloon Art</a> + in colab notebook you can load any other Diffusers 🧨 SD model hosted on HuggingFace 🤗.
|
263 |
+
</p>
|
264 |
+
<p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
|
|
|
265 |
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
|
266 |
</p>
|
267 |
+
<p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
|
268 |
+
<a style="display:inline-block" href="https://huggingface.co/spaces/anzorq/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
|
269 |
</div>
|
270 |
"""
|
271 |
)
|
|
|
283 |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
284 |
|
285 |
|
286 |
+
# image_out = gr.Image(height=512)
|
287 |
+
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
|
288 |
+
|
289 |
+
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
|
290 |
+
error_output = gr.Markdown()
|
291 |
|
292 |
with gr.Column(scale=45):
|
293 |
with gr.Tab("Options"):
|
294 |
with gr.Group():
|
295 |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
296 |
|
297 |
+
n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=16, step=1)
|
298 |
|
299 |
with gr.Row():
|
300 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
301 |
+
steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=100, step=1)
|
302 |
|
303 |
with gr.Row():
|
304 |
+
width = gr.Slider(label="Width", value=512, minimum=64, maximum=2048, step=8)
|
305 |
+
height = gr.Slider(label="Height", value=512, minimum=64, maximum=2048, step=8)
|
306 |
|
307 |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
308 |
|
|
|
312 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
313 |
|
314 |
if is_colab:
|
315 |
+
model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
|
316 |
+
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
|
317 |
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
318 |
+
steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)
|
319 |
+
|
320 |
+
inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
|
321 |
+
outputs = [gallery, error_output]
|
322 |
+
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
323 |
+
generate.click(inference, inputs=inputs, outputs=outputs)
|
324 |
+
|
325 |
+
ex = gr.Examples([
|
326 |
+
[models[7].name, "tiny cute and adorable kitten adventurer dressed in a warm overcoat with survival gear on a winters day", 7.5, 25],
|
327 |
+
[models[4].name, "portrait of dwayne johnson", 7.0, 35],
|
328 |
+
[models[5].name, "portrait of a beautiful alyx vance half life", 10, 25],
|
329 |
+
[models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 30],
|
330 |
+
[models[5].name, "fantasy portrait painting, digital art", 4.0, 20],
|
331 |
+
], inputs=[model_name, prompt, guidance, steps], outputs=outputs, fn=inference, cache_examples=False)
|
332 |
+
|
333 |
+
gr.HTML("""
|
334 |
+
<div style="border-top: 1px solid #303030;">
|
335 |
+
<br>
|
336 |
+
<p>Models by <a href="https://huggingface.co/nitrosocke">@nitrosocke</a>, <a href="https://twitter.com/haruu1367">@haruu1367</a>, <a href="https://twitter.com/DGSpitzer">@Helixngc7293</a>, <a href="https://twitter.com/dal_mack">@dal_mack</a>, <a href="https://twitter.com/prompthero">@prompthero</a> and others. ❤️</p>
|
337 |
+
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
|
338 |
+
<p>Space by:<br>
|
339 |
+
<a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a><br>
|
340 |
+
<a href="https://github.com/qunash"><img alt="GitHub followers" src="https://img.shields.io/github/followers/qunash?style=social" alt="Github Follow"></a></p><br><br>
|
341 |
+
<a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 45px !important;width: 162px !important;" ></a><br><br>
|
342 |
+
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion" alt="visitors"></p>
|
343 |
+
</div>
|
344 |
+
""")
|
345 |
+
|
346 |
+
demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
|
347 |
+
|
348 |
+
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
349 |
+
|
350 |
+
# if not is_colab:
|
351 |
+
demo.queue(concurrency_count=1)
|
352 |
+
demo.launch(debug=is_colab, share=is_colab)
|
requirements (1).txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
2 |
+
numpy
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
diffusers
|
6 |
+
#diffusers
|
7 |
+
#git+https://github.com/huggingface/diffusers.git
|
8 |
+
#git+https://github.com/huggingface/diffusers
|
9 |
+
git+https://github.com/huggingface/diffusers.git
|
10 |
+
git+https://github.com/huggingface/diffusers
|
11 |
+
transformers
|
12 |
+
#transformers
|
13 |
+
#git+https://github.com/huggingface/transformers
|
14 |
+
git+https://github.com/huggingface/transformers
|
15 |
+
scipy
|
16 |
+
ftfy
|
17 |
+
psutil
|
18 |
+
accelerate
|
19 |
+
OmegaConf
|
20 |
+
pytorch_lightning
|
21 |
+
#OmegaConf
|
22 |
+
#pytorch_lightning
|
23 |
+
triton
|
24 |
+
xformers
|
25 |
+
#xformers
|
26 |
+
#https://github.com/apolinario/xformers/releases/download/0.0.3/xformers-0.0.14.dev0-cp38-cp38-linux_x86_64.whl
|
27 |
+
https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.16/xformers-0.0.16+bc08bbc.d20230123-cp38-cp38-linux_x86_64.whl
|
requirements (2).txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
2 |
+
numpy
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
accelerate
|
6 |
+
transformers
|
7 |
+
#transformers
|
8 |
+
#git+https://github.com/huggingface/transformers
|
9 |
+
git+https://github.com/huggingface/transformers
|
10 |
+
diffusers
|
11 |
+
#diffusers
|
12 |
+
#git+https://github.com/huggingface/diffusers.git
|
13 |
+
#git+https://github.com/huggingface/diffusers
|
14 |
+
git+https://github.com/huggingface/diffusers.git
|
15 |
+
git+https://github.com/huggingface/diffusers
|
16 |
+
scipy
|
17 |
+
ftfy
|
18 |
+
psutil
|
19 |
+
OmegaConf
|
20 |
+
pytorch_lightning
|
21 |
+
#OmegaConf
|
22 |
+
#pytorch_lightning
|
23 |
+
triton
|
24 |
+
xformers
|
25 |
+
#xformers
|
26 |
+
#https://github.com/apolinario/xformers/releases/download/0.0.3/xformers-0.0.14.dev0-cp38-cp38-linux_x86_64.whl
|
27 |
+
https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.16/xformers-0.0.16+bc08bbc.d20230123-cp38-cp38-linux_x86_64.whl
|
requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
2 |
+
numpy
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
#diffusers
|
6 |
+
git+https://github.com/huggingface/diffusers.git
|
7 |
+
#transformers
|
8 |
+
git+https://github.com/huggingface/transformers
|
9 |
+
scipy
|
10 |
+
ftfy
|
11 |
+
psutil
|
12 |
+
accelerate
|
13 |
+
#OmegaConf
|
14 |
+
#pytorch_lightning
|
15 |
+
triton
|
16 |
+
xformers
|
17 |
+
#https://github.com/apolinario/xformers/releases/download/0.0.3/xformers-0.0.14.dev0-cp38-cp38-linux_x86_64.whl
|
18 |
+
https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.16/xformers-0.0.16+bc08bbc.d20230123-cp38-cp38-linux_x86_64.whl
|
19 |
+
https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.16/xformers-0.0.16+814314d.d20230119.A10G-cp310-cp310-linux_x86_64.whl
|