Safetensors
English
llava_next
medical
biology
AdaptLLM commited on
Commit
d71aed3
1 Parent(s): 3bc2b5a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -2
README.md CHANGED
@@ -25,7 +25,22 @@ We investigate domain adaptation of MLLMs through post-training, focusing on dat
25
  <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
26
  </p>
27
 
28
- ## How to use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  ```python
31
  from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
@@ -40,7 +55,7 @@ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
40
 
41
  instruction = "What's in the image?"
42
 
43
- model_path='AdaptLLM/medicine-LLaVA-NeXT-Llama3-8B'
44
 
45
  # =========================== Do NOT need to modify the following ===============================
46
  # Load the processor
@@ -70,6 +85,10 @@ pred = processor.decode(output[0][answer_start:], skip_special_tokens=True)
70
  print(pred)
71
  ```
72
 
 
 
 
 
73
  ## Citation
74
  If you find our work helpful, please cite us.
75
 
 
25
  <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
26
  </p>
27
 
28
+ ## Resources
29
+ **🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
30
+
31
+ | Model | Repo ID in HF 🤗 | Domain | Base Model | Training Data | Evaluation Benchmark |
32
+ |:----------------------------------------------------------------------------|:--------------------------------------------|:--------------|:-------------------------|:------------------------------------------------------------------------------------------------|-----------------------|
33
+ | [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) | AdaptLLM/visual-instruction-synthesizer | - | open-llava-next-llama3-8b | VisionFLAN and ALLaVA | - |
34
+ | [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) | AdaptLLM/biomed-Qwen2-VL-2B-Instruct | Biomedicine | Qwen2-VL-2B-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
35
+ | [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct) | AdaptLLM/food-Qwen2-VL-2B-Instruct | Food | Qwen2-VL-2B-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
36
+ | [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B) | AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B | Biomedicine | open-llava-next-llama3-8b | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
37
+ | [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B) |AdaptLLM/food-LLaVA-NeXT-Llama3-8B | Food | open-llava-next-llama3-8b | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
38
+ | [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct | Biomedicine | Llama-3.2-11B-Vision-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
39
+ | [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct | Food | Llama-3.2-11B-Vision-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
40
+
41
+ **Code**: [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer)
42
+
43
+ ## 1. To Chat with AdaMLLM
44
 
45
  ```python
46
  from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
 
55
 
56
  instruction = "What's in the image?"
57
 
58
+ model_path='AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B'
59
 
60
  # =========================== Do NOT need to modify the following ===============================
61
  # Load the processor
 
85
  print(pred)
86
  ```
87
 
88
+ 2. To Evaluate AdaMLLM on the domain-spefic Benchmarks:
89
+
90
+ See [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) to reproduce our results and evalaute more MLLMs on the domain-specific benchmarks.
91
+
92
  ## Citation
93
  If you find our work helpful, please cite us.
94