Safetensors
English
mllama
biology
medical
chemistry
AdaptLLM commited on
Commit
6ce2eff
·
verified ·
1 Parent(s): 0bf57da

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -2
README.md CHANGED
@@ -13,7 +13,7 @@ tags:
13
  ---
14
  # Adapting Multimodal Large Language Models to Domains via Post-Training
15
 
16
- This repos contains the **biomedicine MLLM developed from Llama-3.2-11B** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930). The correspoding training data is in [medicine-visual-instructions](https://huggingface.co/datasets/AdaptLLM/medicine-visual-instructions).
17
 
18
  The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md)
19
 
@@ -30,7 +30,7 @@ We investigate domain adaptation of MLLMs through post-training, focusing on dat
30
 
31
  Starting with transformers >= 4.45.0 onward, you can run inference using conversational messages that may include an image you can query about.
32
 
33
- Make sure to update your transformers installation via pip install --upgrade transformers.
34
 
35
  ```bash
36
  import requests
@@ -68,6 +68,9 @@ output = model.generate(**inputs, max_new_tokens=30)
68
  print(processor.decode(output[0]))
69
  ```
70
 
 
 
 
71
  ## Citation
72
  If you find our work helpful, please cite us.
73
 
 
13
  ---
14
  # Adapting Multimodal Large Language Models to Domains via Post-Training
15
 
16
+ This repos contains the **biomedicine MLLM developed from Llama-3.2-11B** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930). The correspoding training dataset is in [medicine-visual-instructions](https://huggingface.co/datasets/AdaptLLM/medicine-visual-instructions).
17
 
18
  The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md)
19
 
 
30
 
31
  Starting with transformers >= 4.45.0 onward, you can run inference using conversational messages that may include an image you can query about.
32
 
33
+ Make sure to update your transformers installation via `pip install --upgrade transformers`.
34
 
35
  ```bash
36
  import requests
 
68
  print(processor.decode(output[0]))
69
  ```
70
 
71
+ Since our model architecture aligns with the base model, you can refer to the official repository of [Llama-3.2-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) for more advanced usage instructions.
72
+
73
+
74
  ## Citation
75
  If you find our work helpful, please cite us.
76