Update README.md
Browse files
README.md
CHANGED
@@ -26,7 +26,30 @@ We investigate domain adaptation of MLLMs through post-training, focusing on dat
|
|
26 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
|
27 |
</p>
|
28 |
|
29 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
1. Set up
|
31 |
```bash
|
32 |
pip install qwen-vl-utils
|
@@ -57,6 +80,8 @@ processor = AutoProcessor.from_pretrained("AdaptLLM/medicine-Qwen2-VL-2B-Instruc
|
|
57 |
# max_pixels = 1280*28*28
|
58 |
# processor = AutoProcessor.from_pretrained("AdaptLLM/medicine-Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
59 |
|
|
|
|
|
60 |
messages = [
|
61 |
{
|
62 |
"role": "user",
|
@@ -94,8 +119,13 @@ output_text = processor.batch_decode(
|
|
94 |
)
|
95 |
print(output_text)
|
96 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
Since our model architecture aligns with the base model, you can refer to the official repository of [Qwen-2-VL](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/edit/main/README.md) for more advanced usage instructions.
|
99 |
|
100 |
## Citation
|
101 |
If you find our work helpful, please cite us.
|
|
|
26 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
|
27 |
</p>
|
28 |
|
29 |
+
## Resources
|
30 |
+
**🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
|
31 |
+
|
32 |
+
| Model | Repo ID in HF 🤗 | Domain | Base Model | Training Data | Evaluation Benchmark |
|
33 |
+
|:----------------------------------------------------------------------------|:--------------------------------------------|:--------------|:-------------------------|:------------------------------------------------------------------------------------------------|-----------------------|
|
34 |
+
| [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) | AdaptLLM/visual-instruction-synthesizer | - | open-llava-next-llama3-8b | VisionFLAN and ALLaVA | - |
|
35 |
+
| [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) | AdaptLLM/biomed-Qwen2-VL-2B-Instruct | Biomedicine | Qwen2-VL-2B-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
|
36 |
+
| [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct) | AdaptLLM/food-Qwen2-VL-2B-Instruct | Food | Qwen2-VL-2B-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
|
37 |
+
| [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B) | AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B | Biomedicine | open-llava-next-llama3-8b | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
|
38 |
+
| [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B) |AdaptLLM/food-LLaVA-NeXT-Llama3-8B | Food | open-llava-next-llama3-8b | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
|
39 |
+
| [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct | Biomedicine | Llama-3.2-11B-Vision-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
|
40 |
+
| [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct | Food | Llama-3.2-11B-Vision-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
|
41 |
+
|
42 |
+
**Code**: [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer)
|
43 |
+
|
44 |
+
## 1. To Chat with AdaMLLM
|
45 |
+
|
46 |
+
Our model architecture aligns with the base model: Qwen-2-VL-Instruct. Below, we provide a usage example. For more advanced usage instructions, please refer to the official [Qwen-2-VL-Instruct repository](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/edit/main/README.md).
|
47 |
+
|
48 |
+
**Note:** For AdaMLLM, always place the image at the beginning of the input instruction in the messages.
|
49 |
+
|
50 |
+
<details>
|
51 |
+
<summary> Click to expand </summary>
|
52 |
+
|
53 |
1. Set up
|
54 |
```bash
|
55 |
pip install qwen-vl-utils
|
|
|
80 |
# max_pixels = 1280*28*28
|
81 |
# processor = AutoProcessor.from_pretrained("AdaptLLM/medicine-Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
82 |
|
83 |
+
|
84 |
+
# NOTE: For AdaMLLM, always place the image at the beginning of the input instruction in the messages.
|
85 |
messages = [
|
86 |
{
|
87 |
"role": "user",
|
|
|
119 |
)
|
120 |
print(output_text)
|
121 |
```
|
122 |
+
</details>
|
123 |
+
|
124 |
+
## 2. To Evaluate AdaMLLM on Domain-Specific Benchmarks
|
125 |
+
|
126 |
+
Refer to the [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) to reproduce our results and evaluate many other MLLMs on domain-specific benchmarks.
|
127 |
+
|
128 |
|
|
|
129 |
|
130 |
## Citation
|
131 |
If you find our work helpful, please cite us.
|