Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,123 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- AdaptLLM/medicine-visual-instructions
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- Qwen/Qwen2-VL-2B-Instruct
|
9 |
+
tags:
|
10 |
+
- biology
|
11 |
+
- medical
|
12 |
+
- chemistry
|
13 |
+
---
|
14 |
+
# Adapting Multimodal Large Language Models to Domains via Post-Training
|
15 |
+
|
16 |
+
This repos contains the **biomedicine MLLM developed from Qwen-2-VL-2B-Instruct** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930). The correspoding training dataset is in [medicine-visual-instructions](https://huggingface.co/datasets/AdaptLLM/medicine-visual-instructions).
|
17 |
+
|
18 |
+
The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md)
|
19 |
+
|
20 |
+
We investigate domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation.
|
21 |
+
**(1) Data Synthesis**: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. **Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs.**
|
22 |
+
**(2) Training Pipeline**: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training.
|
23 |
+
**(3) Task Evaluation**: We conduct experiments in two domains, biomedicine and food, by post-training MLLMs of different sources and scales (e.g., Qwen2-VL-2B, LLaVA-v1.6-8B, Llama-3.2-11B), and then evaluating MLLM performance on various domain-specific tasks.
|
24 |
+
|
25 |
+
<p align='center'>
|
26 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
|
27 |
+
</p>
|
28 |
+
|
29 |
+
## How to use
|
30 |
+
1. Set up
|
31 |
+
```bash
|
32 |
+
pip install qwen-vl-utils
|
33 |
+
```
|
34 |
+
2. Inference
|
35 |
+
```python
|
36 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
37 |
+
from qwen_vl_utils import process_vision_info
|
38 |
+
|
39 |
+
# default: Load the model on the available device(s)
|
40 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
41 |
+
"AdaptLLM/medicine-Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto"
|
42 |
+
)
|
43 |
+
|
44 |
+
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
45 |
+
# model = Qwen2VLForConditionalGeneration.from_pretrained(
|
46 |
+
# "AdaptLLM/medicine-Qwen2-VL-2B-Instruct",
|
47 |
+
# torch_dtype=torch.bfloat16,
|
48 |
+
# attn_implementation="flash_attention_2",
|
49 |
+
# device_map="auto",
|
50 |
+
# )
|
51 |
+
|
52 |
+
# default processer
|
53 |
+
processor = AutoProcessor.from_pretrained("AdaptLLM/medicine-Qwen2-VL-2B-Instruct")
|
54 |
+
|
55 |
+
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
|
56 |
+
# min_pixels = 256*28*28
|
57 |
+
# max_pixels = 1280*28*28
|
58 |
+
# processor = AutoProcessor.from_pretrained("AdaptLLM/medicine-Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
59 |
+
|
60 |
+
messages = [
|
61 |
+
{
|
62 |
+
"role": "user",
|
63 |
+
"content": [
|
64 |
+
{
|
65 |
+
"type": "image",
|
66 |
+
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
|
67 |
+
},
|
68 |
+
{"type": "text", "text": "Describe this image."},
|
69 |
+
],
|
70 |
+
}
|
71 |
+
]
|
72 |
+
|
73 |
+
# Preparation for inference
|
74 |
+
text = processor.apply_chat_template(
|
75 |
+
messages, tokenize=False, add_generation_prompt=True
|
76 |
+
)
|
77 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
78 |
+
inputs = processor(
|
79 |
+
text=[text],
|
80 |
+
images=image_inputs,
|
81 |
+
videos=video_inputs,
|
82 |
+
padding=True,
|
83 |
+
return_tensors="pt",
|
84 |
+
)
|
85 |
+
inputs = inputs.to("cuda")
|
86 |
+
|
87 |
+
# Inference: Generation of the output
|
88 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
89 |
+
generated_ids_trimmed = [
|
90 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
91 |
+
]
|
92 |
+
output_text = processor.batch_decode(
|
93 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
94 |
+
)
|
95 |
+
print(output_text)
|
96 |
+
```
|
97 |
+
|
98 |
+
Since our model architecture aligns with the base model, you can refer to the official repository of [Qwen-2-VL](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/edit/main/README.md) for more advanced usage instructions.
|
99 |
+
|
100 |
+
## Citation
|
101 |
+
If you find our work helpful, please cite us.
|
102 |
+
|
103 |
+
AdaMLLM
|
104 |
+
```bibtex
|
105 |
+
@article{adamllm,
|
106 |
+
title={On Domain-Specific Post-Training for Multimodal Large Language Models},
|
107 |
+
author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
|
108 |
+
journal={arXiv preprint arXiv:2411.19930},
|
109 |
+
year={2024}
|
110 |
+
}
|
111 |
+
```
|
112 |
+
|
113 |
+
[AdaptLLM](https://huggingface.co/papers/2309.09530) (ICLR 2024)
|
114 |
+
```bibtex
|
115 |
+
@inproceedings{
|
116 |
+
adaptllm,
|
117 |
+
title={Adapting Large Language Models via Reading Comprehension},
|
118 |
+
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
|
119 |
+
booktitle={The Twelfth International Conference on Learning Representations},
|
120 |
+
year={2024},
|
121 |
+
url={https://openreview.net/forum?id=y886UXPEZ0}
|
122 |
+
}
|
123 |
+
```
|