AdaptLLM commited on
Commit
96a1a28
·
verified ·
1 Parent(s): 7be0be6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -2
README.md CHANGED
@@ -23,7 +23,30 @@ We investigate domain adaptation of MLLMs through post-training, focusing on dat
23
  <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/bRu85CWwP9129bSCRzos2.png" width="1000">
24
  </p>
25
 
26
- ## How to use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  1. Set up
28
  ```bash
29
  pip install qwen-vl-utils
@@ -54,6 +77,7 @@ processor = AutoProcessor.from_pretrained("AdaptLLM/food-Qwen2-VL-2B-Instruct")
54
  # max_pixels = 1280*28*28
55
  # processor = AutoProcessor.from_pretrained("AdaptLLM/food-Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
56
 
 
57
  messages = [
58
  {
59
  "role": "user",
@@ -92,7 +116,12 @@ output_text = processor.batch_decode(
92
  print(output_text)
93
  ```
94
 
95
- Since our model architecture aligns with the base model, you can refer to the official repository of [Qwen-2-VL](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/edit/main/README.md) for more advanced usage instructions.
 
 
 
 
 
96
 
97
  ## Citation
98
  If you find our work helpful, please cite us.
 
23
  <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/bRu85CWwP9129bSCRzos2.png" width="1000">
24
  </p>
25
 
26
+ ## Resources
27
+ **🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
28
+
29
+ | Model | Repo ID in HF 🤗 | Domain | Base Model | Training Data | Evaluation Benchmark |
30
+ |:----------------------------------------------------------------------------|:--------------------------------------------|:--------------|:-------------------------|:------------------------------------------------------------------------------------------------|-----------------------|
31
+ | [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) | AdaptLLM/visual-instruction-synthesizer | - | open-llava-next-llama3-8b | VisionFLAN and ALLaVA | - |
32
+ | [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) | AdaptLLM/biomed-Qwen2-VL-2B-Instruct | Biomedicine | Qwen2-VL-2B-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
33
+ | [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct) | AdaptLLM/food-Qwen2-VL-2B-Instruct | Food | Qwen2-VL-2B-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
34
+ | [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B) | AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B | Biomedicine | open-llava-next-llama3-8b | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
35
+ | [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B) |AdaptLLM/food-LLaVA-NeXT-Llama3-8B | Food | open-llava-next-llama3-8b | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
36
+ | [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct | Biomedicine | Llama-3.2-11B-Vision-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
37
+ | [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct | Food | Llama-3.2-11B-Vision-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
38
+
39
+ **Code**: [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer)
40
+
41
+ ## 1. To Chat with AdaMLLM
42
+
43
+ Our model architecture aligns with the base model: Qwen-2-VL-Instruct. Below, we provide a usage example. For more advanced usage instructions, please refer to the official [Qwen-2-VL-Instruct repository](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/edit/main/README.md).
44
+
45
+ **Note:** For AdaMLLM, always place the image at the beginning of the input instruction in the messages.
46
+
47
+ <details>
48
+ <summary> Click to expand </summary>
49
+
50
  1. Set up
51
  ```bash
52
  pip install qwen-vl-utils
 
77
  # max_pixels = 1280*28*28
78
  # processor = AutoProcessor.from_pretrained("AdaptLLM/food-Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
79
 
80
+ # NOTE: For AdaMLLM, always place the image at the beginning of the input instruction in the messages.
81
  messages = [
82
  {
83
  "role": "user",
 
116
  print(output_text)
117
  ```
118
 
119
+ </details>
120
+
121
+ ## 2. To Evaluate AdaMLLM on Domain-Specific Benchmarks
122
+
123
+ Refer to the [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) to reproduce our results and evaluate many other MLLMs on domain-specific benchmarks.
124
+
125
 
126
  ## Citation
127
  If you find our work helpful, please cite us.