Update README.md
Browse files
README.md
CHANGED
@@ -1,8 +1,187 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
<p align='left'>
|
6 |
-
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/
|
7 |
</p>
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- FreedomIntelligence/ALLaVA-4V
|
5 |
+
- Vision-Flan/vision-flan_191-task_1k
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
base_model:
|
9 |
+
- Lin-Chen/open-llava-next-llama3-8b
|
10 |
---
|
11 |
+
# Adapting Multimodal Large Language Models to Domains via Post-Training
|
12 |
+
|
13 |
+
This repos contains the **visual-instruction synthesizer** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930).
|
14 |
+
|
15 |
+
The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md)
|
16 |
+
|
17 |
+
We investigate domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation.
|
18 |
+
**(1) Data Synthesis**: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. **Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs.**
|
19 |
+
**(2) Training Pipeline**: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training.
|
20 |
+
**(3) Task Evaluation**: We conduct experiments in two domains, biomedicine and food, by post-training MLLMs of different sources and scales (e.g., Qwen2-VL-2B, LLaVA-v1.6-8B, Llama-3.2-11B), and then evaluating MLLM performance on various domain-specific tasks.
|
21 |
|
22 |
<p align='left'>
|
23 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/bRu85CWwP9129bSCRzos2.png" width="1000">
|
24 |
</p>
|
25 |
|
26 |
+
## How to use
|
27 |
+
To synthesize an "instruction-informative response-precise response" triplet based on the following image-caption pair.
|
28 |
+
|
29 |
+
<p align='left'>
|
30 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/mgI_Ayj12_Q_kviWvfAVb.jpeg" width="300">
|
31 |
+
</p>
|
32 |
+
|
33 |
+
```python
|
34 |
+
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
|
35 |
+
import torch
|
36 |
+
from PIL import Image
|
37 |
+
import requests
|
38 |
+
|
39 |
+
# Define your input image-caption pair here:
|
40 |
+
## image
|
41 |
+
url = "https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/mgI_Ayj12_Q_kviWvfAVb.jpeg"
|
42 |
+
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
43 |
+
|
44 |
+
## Caption
|
45 |
+
caption = "Dish: Strawberry Waffles\n\nSteps to prepare:\na). Preheat and grease a waffle iron according to manufacturer's instructions.\nb). Sift flour, baking powder, and salt together in a bowl. Whisk buttermilk, yogurt, butter, eggs, and sugar together in a separate bowl; stir into flour mixture until batter is smooth. Fold strawberries into batter.\nc). Pour about 1/3 cup batter into preheated waffle iron; cook until lightly browned, 5 to 7 minutes. Repeat with remaining batter.\n\nIngredients you'll need:\n(a). 2 1/2 cups all-purpose flour\n(b). 4 teaspoons baking powder\n(c). 3/4 teaspoon salt\n(d). 2 cups buttermilk\n(e). 1/2 cup vanilla Greek-style yogurt\n(f). 1/2 cup butter, melted\n(g). 2 eggs, beaten\n(h). 1 1/2 tablespoons white sugar\n(i). 3/4 cup chopped strawberries, or more to taste"
|
46 |
+
|
47 |
+
# Path to synthesizer
|
48 |
+
model_path = "AdaptLLM/visual-instruction-synthesizer"
|
49 |
+
|
50 |
+
|
51 |
+
# =========================== Do NOT need to modify the following ===============================
|
52 |
+
|
53 |
+
# Prompt Hints
|
54 |
+
caption_hint = "Describe the image."
|
55 |
+
precise_hint = "Answer with a precise response.\n"
|
56 |
+
informative_hint = "Answer with an informative response.\n"
|
57 |
+
|
58 |
+
# Function to parse predictions
|
59 |
+
def parse_pred(pred):
|
60 |
+
if not pred.endswith("<|end_of_text|>"):
|
61 |
+
return []
|
62 |
+
|
63 |
+
pred = pred[:-len("<|end_of_text|>")]
|
64 |
+
|
65 |
+
QA_str_list = pred.split("<|start_header_id|>user<|end_header_id|>\n\n")
|
66 |
+
if not pred.endswith("<|eot_id|>"):
|
67 |
+
QA_str_list = QA_str_list[:-1]
|
68 |
+
|
69 |
+
QA_list = []
|
70 |
+
for QA_str in QA_str_list:
|
71 |
+
try:
|
72 |
+
assert "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" in QA_str
|
73 |
+
Q_str, A_str = QA_str.split("<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n")
|
74 |
+
Q_str, A_str = Q_str.strip(), A_str[:-len("<|eot_id|>")].strip()
|
75 |
+
assert Q_str and A_str
|
76 |
+
QA_list.append({"Q": Q_str, "A": A_str})
|
77 |
+
except AssertionError:
|
78 |
+
pass # Skip invalid entries
|
79 |
+
|
80 |
+
conversations = []
|
81 |
+
for qa_entry in QA_list:
|
82 |
+
conversations.append({"from": "human", "value": qa_entry["Q"]})
|
83 |
+
conversations.append({"from": "gpt", "value": qa_entry["A"]})
|
84 |
+
return conversations
|
85 |
+
|
86 |
+
# Function to extract task triplets
|
87 |
+
def get_task_triplet(pred):
|
88 |
+
pred_QAs = parse_pred(pred)
|
89 |
+
precise_QAs = {}
|
90 |
+
informative_QAs = {}
|
91 |
+
collected_QA = None
|
92 |
+
|
93 |
+
for idx in range(0, len(pred_QAs), 2): # Iterate over question-answer pairs
|
94 |
+
question = pred_QAs[idx]["value"]
|
95 |
+
answer = pred_QAs[idx + 1]["value"]
|
96 |
+
if question.startswith(precise_hint):
|
97 |
+
precise_q = question[len(precise_hint):]
|
98 |
+
if precise_q in informative_QAs:
|
99 |
+
collected_QA = {
|
100 |
+
"Q": precise_q,
|
101 |
+
"precise_A": answer,
|
102 |
+
"informative_A": informative_QAs[precise_q],
|
103 |
+
}
|
104 |
+
break
|
105 |
+
else:
|
106 |
+
precise_QAs[precise_q] = answer
|
107 |
+
elif question.startswith(informative_hint):
|
108 |
+
informative_q = question[len(informative_hint):]
|
109 |
+
if informative_q in precise_QAs:
|
110 |
+
collected_QA = {
|
111 |
+
"Q": informative_q,
|
112 |
+
"precise_A": precise_QAs[informative_q],
|
113 |
+
"informative_A": answer,
|
114 |
+
}
|
115 |
+
break
|
116 |
+
else:
|
117 |
+
informative_QAs[informative_q] = answer
|
118 |
+
|
119 |
+
return collected_QA
|
120 |
+
|
121 |
+
# Load the processor
|
122 |
+
processor = LlavaNextProcessor.from_pretrained(model_path)
|
123 |
+
|
124 |
+
# Define image token
|
125 |
+
image_token = "<|reserved_special_token_4|>"
|
126 |
+
|
127 |
+
# Format the prompt
|
128 |
+
prompt = (
|
129 |
+
f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n"
|
130 |
+
f"You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
131 |
+
f"<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
|
132 |
+
f"{image_token}\n{caption_hint}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
133 |
+
f"{caption}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
|
134 |
+
)
|
135 |
+
|
136 |
+
# Load the model
|
137 |
+
model = LlavaNextForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16, device_map="auto")
|
138 |
+
|
139 |
+
# Prepare inputs and generate output
|
140 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
|
141 |
+
answer_start = int(inputs["input_ids"].shape[-1])
|
142 |
+
output = model.generate(**inputs, max_new_tokens=512)
|
143 |
+
|
144 |
+
# Decode predictions
|
145 |
+
pred = processor.decode(output[0][answer_start:], skip_special_tokens=False)
|
146 |
+
print(f"## Synthesizer predictions:\n{pred}")
|
147 |
+
|
148 |
+
# Extract task triplets
|
149 |
+
task_triplet = get_task_triplet(pred)
|
150 |
+
print(f"## Synthesized Task triplet:\n{task_triplet}")
|
151 |
+
```
|
152 |
+
|
153 |
+
|
154 |
+
## Citation
|
155 |
+
If you find our work helpful, please cite us.
|
156 |
+
|
157 |
+
AdaMLLM
|
158 |
+
```bibtex
|
159 |
+
@article{adamllm,
|
160 |
+
title={On Domain-Specific Post-Training for Multimodal Large Language Models},
|
161 |
+
author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
|
162 |
+
journal={arXiv preprint arXiv:2411.19930},
|
163 |
+
year={2024}
|
164 |
+
}
|
165 |
+
```
|
166 |
+
|
167 |
+
[Instruction Pre-Training](https://huggingface.co/papers/2406.14491) (EMNLP 2024)
|
168 |
+
```bibtex
|
169 |
+
@article{cheng2024instruction,
|
170 |
+
title={Instruction Pre-Training: Language Models are Supervised Multitask Learners},
|
171 |
+
author={Cheng, Daixuan and Gu, Yuxian and Huang, Shaohan and Bi, Junyu and Huang, Minlie and Wei, Furu},
|
172 |
+
journal={arXiv preprint arXiv:2406.14491},
|
173 |
+
year={2024}
|
174 |
+
}
|
175 |
+
```
|
176 |
+
|
177 |
+
[Adapt LLM to Domains](https://huggingface.co/papers/2309.09530) (ICLR 2024)
|
178 |
+
```bibtex
|
179 |
+
@inproceedings{
|
180 |
+
cheng2024adapting,
|
181 |
+
title={Adapting Large Language Models via Reading Comprehension},
|
182 |
+
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
|
183 |
+
booktitle={The Twelfth International Conference on Learning Representations},
|
184 |
+
year={2024},
|
185 |
+
url={https://openreview.net/forum?id=y886UXPEZ0}
|
186 |
+
}
|
187 |
+
```
|