--- library_name: transformers license: apache-2.0 base_model: google/byt5-small tags: - generated_from_trainer metrics: - wer model-index: - name: byt5-small-finetuned-yiddish-experiment-9 results: [] --- # byt5-small-finetuned-yiddish-experiment-9 This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3473 - Cer: 0.1505 - Wer: 0.4678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 600 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | 10.7996 | 0.4728 | 100 | 10.9325 | 0.2905 | 0.7232 | | 7.586 | 0.9456 | 200 | 10.5771 | 0.2698 | 0.6850 | | 8.641 | 1.4161 | 300 | 10.0041 | 0.2570 | 0.6571 | | 8.2901 | 1.8889 | 400 | 9.1435 | 0.2478 | 0.6396 | | 8.076 | 2.3593 | 500 | 8.1677 | 0.2394 | 0.6277 | | 7.8061 | 2.8322 | 600 | 7.0784 | 0.2317 | 0.6142 | | 5.6829 | 3.3026 | 700 | 6.0549 | 0.2234 | 0.6094 | | 5.343 | 3.7754 | 800 | 5.0819 | 0.2187 | 0.6038 | | 4.8853 | 4.2459 | 900 | 4.2224 | 0.2157 | 0.6038 | | 3.8875 | 4.7187 | 1000 | 3.5281 | 0.2123 | 0.5990 | | 3.4853 | 5.1891 | 1100 | 2.8204 | 0.2095 | 0.5935 | | 2.7984 | 5.6619 | 1200 | 2.2737 | 0.2039 | 0.5895 | | 2.2336 | 6.1324 | 1300 | 1.7448 | 0.2016 | 0.5823 | | 1.8465 | 6.6052 | 1400 | 1.2905 | 0.1959 | 0.5736 | | 1.6188 | 7.0757 | 1500 | 1.1662 | 0.1945 | 0.5688 | | 1.3051 | 7.5485 | 1600 | 1.1433 | 0.1939 | 0.5704 | | 1.176 | 8.0189 | 1700 | 1.0655 | 0.1910 | 0.5672 | | 1.0653 | 8.4917 | 1800 | 0.8529 | 0.1863 | 0.5561 | | 0.8965 | 8.9645 | 1900 | 0.7841 | 0.1686 | 0.4972 | | 0.7726 | 9.4350 | 2000 | 0.7415 | 0.1649 | 0.4956 | | 0.7771 | 9.9078 | 2100 | 0.6933 | 0.1629 | 0.4885 | | 0.7366 | 10.3783 | 2200 | 0.6601 | 0.1616 | 0.4861 | | 0.6566 | 10.8511 | 2300 | 0.6124 | 0.1593 | 0.4853 | | 0.6469 | 11.3215 | 2400 | 0.5665 | 0.1604 | 0.4829 | | 0.6077 | 11.7943 | 2500 | 0.5210 | 0.1576 | 0.4805 | | 0.5543 | 12.2648 | 2600 | 0.4658 | 0.1576 | 0.4781 | | 0.5217 | 12.7376 | 2700 | 0.4372 | 0.1559 | 0.4781 | | 0.5023 | 13.2080 | 2800 | 0.4111 | 0.1570 | 0.4805 | | 0.4754 | 13.6809 | 2900 | 0.3967 | 0.1554 | 0.4741 | | 0.4551 | 14.1513 | 3000 | 0.3880 | 0.1545 | 0.4726 | | 0.4416 | 14.6241 | 3100 | 0.3800 | 0.1538 | 0.4741 | | 0.4255 | 15.0946 | 3200 | 0.3752 | 0.1542 | 0.4749 | | 0.4306 | 15.5674 | 3300 | 0.3724 | 0.1544 | 0.4741 | | 0.4072 | 16.0378 | 3400 | 0.3663 | 0.1538 | 0.4741 | | 0.4196 | 16.5106 | 3500 | 0.3606 | 0.1528 | 0.4726 | | 0.3983 | 16.9835 | 3600 | 0.3635 | 0.1530 | 0.4694 | | 0.3915 | 17.4539 | 3700 | 0.3605 | 0.1524 | 0.4694 | | 0.4036 | 17.9267 | 3800 | 0.3563 | 0.1517 | 0.4686 | | 0.3893 | 18.3972 | 3900 | 0.3558 | 0.1524 | 0.4686 | | 0.3846 | 18.8700 | 4000 | 0.3562 | 0.1525 | 0.4678 | | 0.3854 | 19.3404 | 4100 | 0.3530 | 0.1516 | 0.4670 | | 0.3859 | 19.8132 | 4200 | 0.3523 | 0.1521 | 0.4678 | | 0.3777 | 20.2837 | 4300 | 0.3516 | 0.1519 | 0.4670 | | 0.3729 | 20.7565 | 4400 | 0.3502 | 0.1516 | 0.4678 | | 0.3753 | 21.2270 | 4500 | 0.3497 | 0.1517 | 0.4678 | | 0.3712 | 21.6998 | 4600 | 0.3502 | 0.1514 | 0.4686 | | 0.3757 | 22.1702 | 4700 | 0.3487 | 0.1508 | 0.4678 | | 0.3716 | 22.6430 | 4800 | 0.3488 | 0.1510 | 0.4678 | | 0.369 | 23.1135 | 4900 | 0.3479 | 0.1507 | 0.4678 | | 0.3808 | 23.5863 | 5000 | 0.3473 | 0.1505 | 0.4678 | | 0.3696 | 24.0567 | 5100 | 0.3472 | 0.1511 | 0.4686 | | 0.3718 | 24.5296 | 5200 | 0.3468 | 0.1508 | 0.4678 | | 0.3651 | 25.0 | 5300 | 0.3466 | 0.1511 | 0.4686 | | 0.3747 | 25.4728 | 5400 | 0.3467 | 0.1508 | 0.4686 | | 0.3661 | 25.9456 | 5500 | 0.3468 | 0.1508 | 0.4686 | | 0.3558 | 26.4161 | 5600 | 0.3472 | 0.1513 | 0.4686 | | 0.3782 | 26.8889 | 5700 | 0.3469 | 0.1511 | 0.4686 | | 0.3636 | 27.3593 | 5800 | 0.3467 | 0.1511 | 0.4686 | | 0.3679 | 27.8322 | 5900 | 0.3466 | 0.1510 | 0.4678 | | 0.3615 | 28.3026 | 6000 | 0.3465 | 0.1511 | 0.4678 | | 0.3688 | 28.7754 | 6100 | 0.3466 | 0.1511 | 0.4678 | | 0.3599 | 29.2459 | 6200 | 0.3466 | 0.1511 | 0.4678 | | 0.3696 | 29.7187 | 6300 | 0.3465 | 0.1511 | 0.4678 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 2.14.4 - Tokenizers 0.21.0