Addwater commited on
Commit
04c4b2e
1 Parent(s): e277be0

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.59 +/- 0.52
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c85f9ebfaaacd6df51bc9e05ff02e3d589437d9b368f414dead68812d150cd1d
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f197b596940>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f197b591bd0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675329948633548950,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGTvVPlwt37zYHwc/GTvVPlwt37zYHwc/GTvVPlwt37zYHwc/GTvVPlwt37zYHwc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyDfOP/kcxD4BfaE+rGstP5u5az9AqVA/AcB7vjstfb+ksrY/XvTcv10KzD+xBLS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAZO9U+XC3fvNgfBz+3NV283+Buu53qzTsZO9U+XC3fvNgfBz+3NV283+Buu53qzTsZO9U+XC3fvNgfBz+3NV283+Buu53qzTsZO9U+XC3fvNgfBz+3NV283+Buu53qzTuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.4164665 -0.02724331 0.52782965]\n [ 0.4164665 -0.02724331 0.52782965]\n [ 0.4164665 -0.02724331 0.52782965]\n [ 0.4164665 -0.02724331 0.52782965]]",
60
+ "desired_goal": "[[ 1.6110773 0.38303354 0.31540683]\n [ 0.6774242 0.92080086 0.81508255]\n [-0.24584962 -0.9889714 1.4273267 ]\n [-1.7262075 1.5940663 -1.4063932 ]]",
61
+ "observation": "[[ 0.4164665 -0.02724331 0.52782965 -0.01350158 -0.003645 0.00628407]\n [ 0.4164665 -0.02724331 0.52782965 -0.01350158 -0.003645 0.00628407]\n [ 0.4164665 -0.02724331 0.52782965 -0.01350158 -0.003645 0.00628407]\n [ 0.4164665 -0.02724331 0.52782965 -0.01350158 -0.003645 0.00628407]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoFmcvQE2QT0yGnM+Q2+2PceZnz33FIY+SmoJPVLP370WCWc+YIh6vZ432z1pGck8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.07634282 0.04717064 0.23740461]\n [ 0.0890794 0.07793003 0.2618787 ]\n [ 0.03354863 -0.10928215 0.2256206 ]\n [-0.06116521 0.10703968 0.02454825]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQQsJGF1+CsCUhpRSlIwBbJRLMowBdJRHQKLOeThYNiJ1fZQoaAZoCWgPQwh2M6MfDYcFwJSGlFKUaBVLMmgWR0Cizj9qDbrUdX2UKGgGaAloD0MIjo8WZwzTBsCUhpRSlGgVSzJoFkdAos4E2zfJm3V9lChoBmgJaA9DCAdfmEwVDAPAlIaUUpRoFUsyaBZHQKLNx54W1tx1fZQoaAZoCWgPQwjQfTmzXcEDwJSGlFKUaBVLMmgWR0Ciz17hWHUMdX2UKGgGaAloD0MI/P84YcLIBcCUhpRSlGgVSzJoFkdAos8lM495hXV9lChoBmgJaA9DCEEo7+NojgXAlIaUUpRoFUsyaBZHQKLO6s9SuQp1fZQoaAZoCWgPQwiNQpJZvUMMwJSGlFKUaBVLMmgWR0Cizq3AuZkTdX2UKGgGaAloD0MIzXUaaalcBMCUhpRSlGgVSzJoFkdAotBBkAggYHV9lChoBmgJaA9DCOASgH9KFQfAlIaUUpRoFUsyaBZHQKLQB98Z1mt1fZQoaAZoCWgPQwgDQuvhy+QIwJSGlFKUaBVLMmgWR0Ciz818LKFJdX2UKGgGaAloD0MIJIEGmzqPCcCUhpRSlGgVSzJoFkdAos+QP5HmR3V9lChoBmgJaA9DCBjt8UI6fADAlIaUUpRoFUsyaBZHQKLRISzPa+N1fZQoaAZoCWgPQwi3lslwPH8DwJSGlFKUaBVLMmgWR0Ci0OdoWYWtdX2UKGgGaAloD0MIWKzhIve0CcCUhpRSlGgVSzJoFkdAotCs5bQkX3V9lChoBmgJaA9DCInt7gG6bwLAlIaUUpRoFUsyaBZHQKLQb8VpKz11fZQoaAZoCWgPQwgqq+l6ogsEwJSGlFKUaBVLMmgWR0Ci0gF/QSi/dX2UKGgGaAloD0MIlrIMcawrAMCUhpRSlGgVSzJoFkdAotHH9FWn0nV9lChoBmgJaA9DCMoWSbvRRxXAlIaUUpRoFUsyaBZHQKLRjbUwztV1fZQoaAZoCWgPQwiMEB5tHDENwJSGlFKUaBVLMmgWR0Ci0VCa7VawdX2UKGgGaAloD0MIOpUMAFVc9L+UhpRSlGgVSzJoFkdAotLrOgQHzHV9lChoBmgJaA9DCJGZC1weK/+/lIaUUpRoFUsyaBZHQKLSsYXO4Xp1fZQoaAZoCWgPQwhbRBSTN6AIwJSGlFKUaBVLMmgWR0Ci0ncIJJGwdX2UKGgGaAloD0MIYp8AipGlC8CUhpRSlGgVSzJoFkdAotI6Ixgy/XV9lChoBmgJaA9DCAfOGVHa2wnAlIaUUpRoFUsyaBZHQKLT6FdLQHB1fZQoaAZoCWgPQwhHWb+ZmA4GwJSGlFKUaBVLMmgWR0Ci067o8p1BdX2UKGgGaAloD0MIgH9KlSg7EMCUhpRSlGgVSzJoFkdAotN0YuTRpnV9lChoBmgJaA9DCMcRa/Ep4ALAlIaUUpRoFUsyaBZHQKLTN3qzJIV1fZQoaAZoCWgPQwipMSHmkooAwJSGlFKUaBVLMmgWR0Ci1NTOoo/idX2UKGgGaAloD0MItqLNcW6TBcCUhpRSlGgVSzJoFkdAotSbSiM5wXV9lChoBmgJaA9DCONrzywJcAbAlIaUUpRoFUsyaBZHQKLUYQ9RrJt1fZQoaAZoCWgPQwg4o+ar5IMIwJSGlFKUaBVLMmgWR0Ci1CQW3z+WdX2UKGgGaAloD0MIlYCYhAt5CMCUhpRSlGgVSzJoFkdAotXHuy/sV3V9lChoBmgJaA9DCJsCmZ1FzwzAlIaUUpRoFUsyaBZHQKLVjf6XSjR1fZQoaAZoCWgPQwiGHcakv9f8v5SGlFKUaBVLMmgWR0Ci1VOFYdQwdX2UKGgGaAloD0MIYyXmWUmLE8CUhpRSlGgVSzJoFkdAotUWYc/+sHV9lChoBmgJaA9DCD9VhQZiOQTAlIaUUpRoFUsyaBZHQKLWr+tr9EV1fZQoaAZoCWgPQwh3E3zT9Bn9v5SGlFKUaBVLMmgWR0Ci1nZEc81XdX2UKGgGaAloD0MIPulEgqnGCcCUhpRSlGgVSzJoFkdAotY7wx33YnV9lChoBmgJaA9DCENVTKWfcA/AlIaUUpRoFUsyaBZHQKLV/p2U0N11fZQoaAZoCWgPQwgvpMNDGL8BwJSGlFKUaBVLMmgWR0Ci1500vXbudX2UKGgGaAloD0MIPdaMDHKXCsCUhpRSlGgVSzJoFkdAotdjl5nlGXV9lChoBmgJaA9DCGbBxB9F/QPAlIaUUpRoFUsyaBZHQKLXKTV2A5J1fZQoaAZoCWgPQwjLvFXXoboPwJSGlFKUaBVLMmgWR0Ci1uwKSgXedX2UKGgGaAloD0MIjGg7pu4KDMCUhpRSlGgVSzJoFkdAotiFme18cHV9lChoBmgJaA9DCJvj3CbcawzAlIaUUpRoFUsyaBZHQKLYS9Pk7wN1fZQoaAZoCWgPQwiFlJ9U+xQCwJSGlFKUaBVLMmgWR0Ci2BF41P30dX2UKGgGaAloD0MIg6RPq+jPCsCUhpRSlGgVSzJoFkdAotfUMb3oLXV9lChoBmgJaA9DCKMeotEdBADAlIaUUpRoFUsyaBZHQKLZcEwFkhB1fZQoaAZoCWgPQwj/A6xVu0YMwJSGlFKUaBVLMmgWR0Ci2TaK+BYndX2UKGgGaAloD0MIeVxUi4iCBcCUhpRSlGgVSzJoFkdAotj8JBw++3V9lChoBmgJaA9DCPQWD+85EAfAlIaUUpRoFUsyaBZHQKLYvumaYu11fZQoaAZoCWgPQwgHYtnMIfkQwJSGlFKUaBVLMmgWR0Ci2lwZflZHdX2UKGgGaAloD0MI3e16aYpACsCUhpRSlGgVSzJoFkdAotoik/KQrHV9lChoBmgJaA9DCDvkZrgB3wHAlIaUUpRoFUsyaBZHQKLZ6B0ZFXt1fZQoaAZoCWgPQwjCTrFqEEYIwJSGlFKUaBVLMmgWR0Ci2atXPqs2dX2UKGgGaAloD0MIYYvdPqvMC8CUhpRSlGgVSzJoFkdAottJa7mMfnV9lChoBmgJaA9DCBx79lymBgjAlIaUUpRoFUsyaBZHQKLbD6AOJ+F1fZQoaAZoCWgPQwg3VIzzNwEIwJSGlFKUaBVLMmgWR0Ci2tWGqPwNdX2UKGgGaAloD0MIysFsAgzrC8CUhpRSlGgVSzJoFkdAotqYlv60pnV9lChoBmgJaA9DCO/nFORnowHAlIaUUpRoFUsyaBZHQKLcPqeK8+R1fZQoaAZoCWgPQwj2twTgnxIAwJSGlFKUaBVLMmgWR0Ci3ATx5LRKdX2UKGgGaAloD0MID4EjgQab+b+UhpRSlGgVSzJoFkdAotvK7I1cdHV9lChoBmgJaA9DCPyohv2emPu/lIaUUpRoFUsyaBZHQKLbjhHbypd1fZQoaAZoCWgPQwiS66aU10oQwJSGlFKUaBVLMmgWR0Ci3SIDPnjidX2UKGgGaAloD0MIdZKtLqckBcCUhpRSlGgVSzJoFkdAotzoXQ+lj3V9lChoBmgJaA9DCJz8Fp0slQDAlIaUUpRoFUsyaBZHQKLcrcW0qpd1fZQoaAZoCWgPQwiGAyFZwGQEwJSGlFKUaBVLMmgWR0Ci3HCDujREdX2UKGgGaAloD0MImGn7V1aqEcCUhpRSlGgVSzJoFkdAot5AVXV9W3V9lChoBmgJaA9DCMUENXwLa/u/lIaUUpRoFUsyaBZHQKLeBwqiGnJ1fZQoaAZoCWgPQwjX3NH/ci3/v5SGlFKUaBVLMmgWR0Ci3c2X9itrdX2UKGgGaAloD0MIZhU2A1ywDMCUhpRSlGgVSzJoFkdAot2QoiLVF3V9lChoBmgJaA9DCCvCTUaVofu/lIaUUpRoFUsyaBZHQKLfMpT/ACZ1fZQoaAZoCWgPQwixqIjTSVYIwJSGlFKUaBVLMmgWR0Ci3vlVT72tdX2UKGgGaAloD0MI5ljeVQ+YB8CUhpRSlGgVSzJoFkdAot6++qR2bHV9lChoBmgJaA9DCOULWkjASATAlIaUUpRoFUsyaBZHQKLegcvugHx1fZQoaAZoCWgPQwgujzUjg7wBwJSGlFKUaBVLMmgWR0Ci4COuieundX2UKGgGaAloD0MIWeAruvVa/7+UhpRSlGgVSzJoFkdAot/qOHWSU3V9lChoBmgJaA9DCKPLm8O1OgLAlIaUUpRoFUsyaBZHQKLfr6+FlCl1fZQoaAZoCWgPQwhxAtNp3cYQwJSGlFKUaBVLMmgWR0Ci33KwyIpIdX2UKGgGaAloD0MI+YTsvI0tAMCUhpRSlGgVSzJoFkdAouFEE7nxKHV9lChoBmgJaA9DCGe1wB4TeRLAlIaUUpRoFUsyaBZHQKLhCnwXqJN1fZQoaAZoCWgPQwj5aHHGMCcGwJSGlFKUaBVLMmgWR0Ci4NArpaA4dX2UKGgGaAloD0MIgCvZsRGI+r+UhpRSlGgVSzJoFkdAouCTD0lJH3V9lChoBmgJaA9DCN4crtUetv+/lIaUUpRoFUsyaBZHQKLiOFlCkXV1fZQoaAZoCWgPQwhqpRDIJY77v5SGlFKUaBVLMmgWR0Ci4f7UXpGGdX2UKGgGaAloD0MIJsed0sFaA8CUhpRSlGgVSzJoFkdAouHEWKuSwHV9lChoBmgJaA9DCDQQy2YOif6/lIaUUpRoFUsyaBZHQKLhh2+PBBR1fZQoaAZoCWgPQwiqm4u/7cn9v5SGlFKUaBVLMmgWR0Ci4zZWJaaDdX2UKGgGaAloD0MIVaGBWDbTAsCUhpRSlGgVSzJoFkdAouL87MgU13V9lChoBmgJaA9DCNxifm5oahDAlIaUUpRoFUsyaBZHQKLiwtyxRl91fZQoaAZoCWgPQwj1gk9z8mL8v5SGlFKUaBVLMmgWR0Ci4oWu5jH5dX2UKGgGaAloD0MILjwvFRuTDcCUhpRSlGgVSzJoFkdAouQzyWiUPnV9lChoBmgJaA9DCHZUNUHUPfy/lIaUUpRoFUsyaBZHQKLj+kTpPh11fZQoaAZoCWgPQwgxs89jlKcIwJSGlFKUaBVLMmgWR0Ci48AgX/HYdX2UKGgGaAloD0MIHo1D/S4MBMCUhpRSlGgVSzJoFkdAouODOkcjq3V9lChoBmgJaA9DCOW1ErpLYg3AlIaUUpRoFUsyaBZHQKLlN6YVqN91fZQoaAZoCWgPQwjp7c9FQyYAwJSGlFKUaBVLMmgWR0Ci5P4qgAZLdX2UKGgGaAloD0MI7MA5I0orEMCUhpRSlGgVSzJoFkdAouTD2criEXV9lChoBmgJaA9DCDNuaqD5XAbAlIaUUpRoFUsyaBZHQKLkhr6+FlF1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:889e82bc5f2c76cf99f7a156b6905e821dc05941167e33f923c07dad27f0155f
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cafe0ab2ac19ff8fb88f3f62545c1bad5927e415724108ac91aef8ee26a3aaa6
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f197b596940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f197b591bd0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675329948633548950, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGTvVPlwt37zYHwc/GTvVPlwt37zYHwc/GTvVPlwt37zYHwc/GTvVPlwt37zYHwc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyDfOP/kcxD4BfaE+rGstP5u5az9AqVA/AcB7vjstfb+ksrY/XvTcv10KzD+xBLS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAZO9U+XC3fvNgfBz+3NV283+Buu53qzTsZO9U+XC3fvNgfBz+3NV283+Buu53qzTsZO9U+XC3fvNgfBz+3NV283+Buu53qzTsZO9U+XC3fvNgfBz+3NV283+Buu53qzTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4164665 -0.02724331 0.52782965]\n [ 0.4164665 -0.02724331 0.52782965]\n [ 0.4164665 -0.02724331 0.52782965]\n [ 0.4164665 -0.02724331 0.52782965]]", "desired_goal": "[[ 1.6110773 0.38303354 0.31540683]\n [ 0.6774242 0.92080086 0.81508255]\n [-0.24584962 -0.9889714 1.4273267 ]\n [-1.7262075 1.5940663 -1.4063932 ]]", "observation": "[[ 0.4164665 -0.02724331 0.52782965 -0.01350158 -0.003645 0.00628407]\n [ 0.4164665 -0.02724331 0.52782965 -0.01350158 -0.003645 0.00628407]\n [ 0.4164665 -0.02724331 0.52782965 -0.01350158 -0.003645 0.00628407]\n [ 0.4164665 -0.02724331 0.52782965 -0.01350158 -0.003645 0.00628407]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoFmcvQE2QT0yGnM+Q2+2PceZnz33FIY+SmoJPVLP370WCWc+YIh6vZ432z1pGck8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07634282 0.04717064 0.23740461]\n [ 0.0890794 0.07793003 0.2618787 ]\n [ 0.03354863 -0.10928215 0.2256206 ]\n [-0.06116521 0.10703968 0.02454825]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQQsJGF1+CsCUhpRSlIwBbJRLMowBdJRHQKLOeThYNiJ1fZQoaAZoCWgPQwh2M6MfDYcFwJSGlFKUaBVLMmgWR0Cizj9qDbrUdX2UKGgGaAloD0MIjo8WZwzTBsCUhpRSlGgVSzJoFkdAos4E2zfJm3V9lChoBmgJaA9DCAdfmEwVDAPAlIaUUpRoFUsyaBZHQKLNx54W1tx1fZQoaAZoCWgPQwjQfTmzXcEDwJSGlFKUaBVLMmgWR0Ciz17hWHUMdX2UKGgGaAloD0MI/P84YcLIBcCUhpRSlGgVSzJoFkdAos8lM495hXV9lChoBmgJaA9DCEEo7+NojgXAlIaUUpRoFUsyaBZHQKLO6s9SuQp1fZQoaAZoCWgPQwiNQpJZvUMMwJSGlFKUaBVLMmgWR0Cizq3AuZkTdX2UKGgGaAloD0MIzXUaaalcBMCUhpRSlGgVSzJoFkdAotBBkAggYHV9lChoBmgJaA9DCOASgH9KFQfAlIaUUpRoFUsyaBZHQKLQB98Z1mt1fZQoaAZoCWgPQwgDQuvhy+QIwJSGlFKUaBVLMmgWR0Ciz818LKFJdX2UKGgGaAloD0MIJIEGmzqPCcCUhpRSlGgVSzJoFkdAos+QP5HmR3V9lChoBmgJaA9DCBjt8UI6fADAlIaUUpRoFUsyaBZHQKLRISzPa+N1fZQoaAZoCWgPQwi3lslwPH8DwJSGlFKUaBVLMmgWR0Ci0OdoWYWtdX2UKGgGaAloD0MIWKzhIve0CcCUhpRSlGgVSzJoFkdAotCs5bQkX3V9lChoBmgJaA9DCInt7gG6bwLAlIaUUpRoFUsyaBZHQKLQb8VpKz11fZQoaAZoCWgPQwgqq+l6ogsEwJSGlFKUaBVLMmgWR0Ci0gF/QSi/dX2UKGgGaAloD0MIlrIMcawrAMCUhpRSlGgVSzJoFkdAotHH9FWn0nV9lChoBmgJaA9DCMoWSbvRRxXAlIaUUpRoFUsyaBZHQKLRjbUwztV1fZQoaAZoCWgPQwiMEB5tHDENwJSGlFKUaBVLMmgWR0Ci0VCa7VawdX2UKGgGaAloD0MIOpUMAFVc9L+UhpRSlGgVSzJoFkdAotLrOgQHzHV9lChoBmgJaA9DCJGZC1weK/+/lIaUUpRoFUsyaBZHQKLSsYXO4Xp1fZQoaAZoCWgPQwhbRBSTN6AIwJSGlFKUaBVLMmgWR0Ci0ncIJJGwdX2UKGgGaAloD0MIYp8AipGlC8CUhpRSlGgVSzJoFkdAotI6Ixgy/XV9lChoBmgJaA9DCAfOGVHa2wnAlIaUUpRoFUsyaBZHQKLT6FdLQHB1fZQoaAZoCWgPQwhHWb+ZmA4GwJSGlFKUaBVLMmgWR0Ci067o8p1BdX2UKGgGaAloD0MIgH9KlSg7EMCUhpRSlGgVSzJoFkdAotN0YuTRpnV9lChoBmgJaA9DCMcRa/Ep4ALAlIaUUpRoFUsyaBZHQKLTN3qzJIV1fZQoaAZoCWgPQwipMSHmkooAwJSGlFKUaBVLMmgWR0Ci1NTOoo/idX2UKGgGaAloD0MItqLNcW6TBcCUhpRSlGgVSzJoFkdAotSbSiM5wXV9lChoBmgJaA9DCONrzywJcAbAlIaUUpRoFUsyaBZHQKLUYQ9RrJt1fZQoaAZoCWgPQwg4o+ar5IMIwJSGlFKUaBVLMmgWR0Ci1CQW3z+WdX2UKGgGaAloD0MIlYCYhAt5CMCUhpRSlGgVSzJoFkdAotXHuy/sV3V9lChoBmgJaA9DCJsCmZ1FzwzAlIaUUpRoFUsyaBZHQKLVjf6XSjR1fZQoaAZoCWgPQwiGHcakv9f8v5SGlFKUaBVLMmgWR0Ci1VOFYdQwdX2UKGgGaAloD0MIYyXmWUmLE8CUhpRSlGgVSzJoFkdAotUWYc/+sHV9lChoBmgJaA9DCD9VhQZiOQTAlIaUUpRoFUsyaBZHQKLWr+tr9EV1fZQoaAZoCWgPQwh3E3zT9Bn9v5SGlFKUaBVLMmgWR0Ci1nZEc81XdX2UKGgGaAloD0MIPulEgqnGCcCUhpRSlGgVSzJoFkdAotY7wx33YnV9lChoBmgJaA9DCENVTKWfcA/AlIaUUpRoFUsyaBZHQKLV/p2U0N11fZQoaAZoCWgPQwgvpMNDGL8BwJSGlFKUaBVLMmgWR0Ci1500vXbudX2UKGgGaAloD0MIPdaMDHKXCsCUhpRSlGgVSzJoFkdAotdjl5nlGXV9lChoBmgJaA9DCGbBxB9F/QPAlIaUUpRoFUsyaBZHQKLXKTV2A5J1fZQoaAZoCWgPQwjLvFXXoboPwJSGlFKUaBVLMmgWR0Ci1uwKSgXedX2UKGgGaAloD0MIjGg7pu4KDMCUhpRSlGgVSzJoFkdAotiFme18cHV9lChoBmgJaA9DCJvj3CbcawzAlIaUUpRoFUsyaBZHQKLYS9Pk7wN1fZQoaAZoCWgPQwiFlJ9U+xQCwJSGlFKUaBVLMmgWR0Ci2BF41P30dX2UKGgGaAloD0MIg6RPq+jPCsCUhpRSlGgVSzJoFkdAotfUMb3oLXV9lChoBmgJaA9DCKMeotEdBADAlIaUUpRoFUsyaBZHQKLZcEwFkhB1fZQoaAZoCWgPQwj/A6xVu0YMwJSGlFKUaBVLMmgWR0Ci2TaK+BYndX2UKGgGaAloD0MIeVxUi4iCBcCUhpRSlGgVSzJoFkdAotj8JBw++3V9lChoBmgJaA9DCPQWD+85EAfAlIaUUpRoFUsyaBZHQKLYvumaYu11fZQoaAZoCWgPQwgHYtnMIfkQwJSGlFKUaBVLMmgWR0Ci2lwZflZHdX2UKGgGaAloD0MI3e16aYpACsCUhpRSlGgVSzJoFkdAotoik/KQrHV9lChoBmgJaA9DCDvkZrgB3wHAlIaUUpRoFUsyaBZHQKLZ6B0ZFXt1fZQoaAZoCWgPQwjCTrFqEEYIwJSGlFKUaBVLMmgWR0Ci2atXPqs2dX2UKGgGaAloD0MIYYvdPqvMC8CUhpRSlGgVSzJoFkdAottJa7mMfnV9lChoBmgJaA9DCBx79lymBgjAlIaUUpRoFUsyaBZHQKLbD6AOJ+F1fZQoaAZoCWgPQwg3VIzzNwEIwJSGlFKUaBVLMmgWR0Ci2tWGqPwNdX2UKGgGaAloD0MIysFsAgzrC8CUhpRSlGgVSzJoFkdAotqYlv60pnV9lChoBmgJaA9DCO/nFORnowHAlIaUUpRoFUsyaBZHQKLcPqeK8+R1fZQoaAZoCWgPQwj2twTgnxIAwJSGlFKUaBVLMmgWR0Ci3ATx5LRKdX2UKGgGaAloD0MID4EjgQab+b+UhpRSlGgVSzJoFkdAotvK7I1cdHV9lChoBmgJaA9DCPyohv2emPu/lIaUUpRoFUsyaBZHQKLbjhHbypd1fZQoaAZoCWgPQwiS66aU10oQwJSGlFKUaBVLMmgWR0Ci3SIDPnjidX2UKGgGaAloD0MIdZKtLqckBcCUhpRSlGgVSzJoFkdAotzoXQ+lj3V9lChoBmgJaA9DCJz8Fp0slQDAlIaUUpRoFUsyaBZHQKLcrcW0qpd1fZQoaAZoCWgPQwiGAyFZwGQEwJSGlFKUaBVLMmgWR0Ci3HCDujREdX2UKGgGaAloD0MImGn7V1aqEcCUhpRSlGgVSzJoFkdAot5AVXV9W3V9lChoBmgJaA9DCMUENXwLa/u/lIaUUpRoFUsyaBZHQKLeBwqiGnJ1fZQoaAZoCWgPQwjX3NH/ci3/v5SGlFKUaBVLMmgWR0Ci3c2X9itrdX2UKGgGaAloD0MIZhU2A1ywDMCUhpRSlGgVSzJoFkdAot2QoiLVF3V9lChoBmgJaA9DCCvCTUaVofu/lIaUUpRoFUsyaBZHQKLfMpT/ACZ1fZQoaAZoCWgPQwixqIjTSVYIwJSGlFKUaBVLMmgWR0Ci3vlVT72tdX2UKGgGaAloD0MI5ljeVQ+YB8CUhpRSlGgVSzJoFkdAot6++qR2bHV9lChoBmgJaA9DCOULWkjASATAlIaUUpRoFUsyaBZHQKLegcvugHx1fZQoaAZoCWgPQwgujzUjg7wBwJSGlFKUaBVLMmgWR0Ci4COuieundX2UKGgGaAloD0MIWeAruvVa/7+UhpRSlGgVSzJoFkdAot/qOHWSU3V9lChoBmgJaA9DCKPLm8O1OgLAlIaUUpRoFUsyaBZHQKLfr6+FlCl1fZQoaAZoCWgPQwhxAtNp3cYQwJSGlFKUaBVLMmgWR0Ci33KwyIpIdX2UKGgGaAloD0MI+YTsvI0tAMCUhpRSlGgVSzJoFkdAouFEE7nxKHV9lChoBmgJaA9DCGe1wB4TeRLAlIaUUpRoFUsyaBZHQKLhCnwXqJN1fZQoaAZoCWgPQwj5aHHGMCcGwJSGlFKUaBVLMmgWR0Ci4NArpaA4dX2UKGgGaAloD0MIgCvZsRGI+r+UhpRSlGgVSzJoFkdAouCTD0lJH3V9lChoBmgJaA9DCN4crtUetv+/lIaUUpRoFUsyaBZHQKLiOFlCkXV1fZQoaAZoCWgPQwhqpRDIJY77v5SGlFKUaBVLMmgWR0Ci4f7UXpGGdX2UKGgGaAloD0MIJsed0sFaA8CUhpRSlGgVSzJoFkdAouHEWKuSwHV9lChoBmgJaA9DCDQQy2YOif6/lIaUUpRoFUsyaBZHQKLhh2+PBBR1fZQoaAZoCWgPQwiqm4u/7cn9v5SGlFKUaBVLMmgWR0Ci4zZWJaaDdX2UKGgGaAloD0MIVaGBWDbTAsCUhpRSlGgVSzJoFkdAouL87MgU13V9lChoBmgJaA9DCNxifm5oahDAlIaUUpRoFUsyaBZHQKLiwtyxRl91fZQoaAZoCWgPQwj1gk9z8mL8v5SGlFKUaBVLMmgWR0Ci4oWu5jH5dX2UKGgGaAloD0MILjwvFRuTDcCUhpRSlGgVSzJoFkdAouQzyWiUPnV9lChoBmgJaA9DCHZUNUHUPfy/lIaUUpRoFUsyaBZHQKLj+kTpPh11fZQoaAZoCWgPQwgxs89jlKcIwJSGlFKUaBVLMmgWR0Ci48AgX/HYdX2UKGgGaAloD0MIHo1D/S4MBMCUhpRSlGgVSzJoFkdAouODOkcjq3V9lChoBmgJaA9DCOW1ErpLYg3AlIaUUpRoFUsyaBZHQKLlN6YVqN91fZQoaAZoCWgPQwjp7c9FQyYAwJSGlFKUaBVLMmgWR0Ci5P4qgAZLdX2UKGgGaAloD0MI7MA5I0orEMCUhpRSlGgVSzJoFkdAouTD2criEXV9lChoBmgJaA9DCDNuaqD5XAbAlIaUUpRoFUsyaBZHQKLkhr6+FlF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (764 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.5938633916899563, "std_reward": 0.5182041676779204, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-02T10:07:51.211866"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a59d2f86b67b4caf895d81c6ab15b8e92bad3474224a0f1390098ec29bdab6e
3
+ size 3056