Adi-0-0-Gupta commited on
Commit
2dbfe2b
1 Parent(s): 0594aca

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,851 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets: []
3
+ language: []
4
+ library_name: sentence-transformers
5
+ metrics:
6
+ - cosine_accuracy@1
7
+ - cosine_accuracy@3
8
+ - cosine_accuracy@5
9
+ - cosine_accuracy@10
10
+ - cosine_precision@1
11
+ - cosine_precision@3
12
+ - cosine_precision@5
13
+ - cosine_precision@10
14
+ - cosine_recall@1
15
+ - cosine_recall@3
16
+ - cosine_recall@5
17
+ - cosine_recall@10
18
+ - cosine_ndcg@10
19
+ - cosine_mrr@10
20
+ - cosine_map@100
21
+ pipeline_tag: sentence-similarity
22
+ tags:
23
+ - sentence-transformers
24
+ - sentence-similarity
25
+ - feature-extraction
26
+ - generated_from_trainer
27
+ - dataset_size:14593
28
+ - loss:MatryoshkaLoss
29
+ - loss:MultipleNegativesRankingLoss
30
+ widget:
31
+ - source_sentence: 'Macro ingredients needed to cook Poha: Orange Carrot, French Bean,
32
+ Fresh Green Pea, Medium Poha, Red Onion, Curry Leaf, Green Chili Pepper'
33
+ sentences:
34
+ - Can you list recipes that contain canned chickpea and canned black bean?
35
+ - What are the leading macro ingredients in Pigeon Pea Curry (Toor Dal)?
36
+ - What macro ingredients form the base of Poha?
37
+ - source_sentence: 'I do have some good recommendations for you! Here are few good
38
+ alternatives to kashmiri pulao:
39
+
40
+ Kashmiri Dum Aloo, Shivani''s Kashmiri Dum Aloo, Chicken Pulao, Chicken Rezala,
41
+ Chicken Kheema Masala, Hyderabadi Chicken Masala, Masala Khichdi, Lentils and
42
+ Rice (Dal Chawal), Homestyle Vegetable Pulao'
43
+ sentences:
44
+ - What recipes are comparable to kashmiri pulao in flavor profile?
45
+ - Can you give me step-by-step instructions to cook Hariyali Chicken Curry?
46
+ - What are some recipes that utilize baking soda and olive oil effectively?
47
+ - source_sentence: 'Garnishing tip for Yellow Rice: Sprinkle with chopped cilantro.'
48
+ sentences:
49
+ - How can I make Yellow Rice look appealing with garnishes?
50
+ - Describe General Tso's Tofu for me.
51
+ - What are the best garnishing tips for Paneer Tikka Masala?
52
+ - source_sentence: 'Recipes that can be made using green chili pepper and grated coconut:
53
+ Kerala Mix Vegetables (Aviyal), Carrot Poriyal, Cauliflower Poriyal, Beetroot
54
+ Poriyal, Maithilee''s Fish Curry, Mix Vegetable Poriyal, Ivy Gourd Curry (Tindora
55
+ Masala), Spiced Indian Moth Beans (Matki Usal), Fish Curry, Andhra Garlic Chicken'
56
+ sentences:
57
+ - What are the culinary uses of ground pork and chayote?
58
+ - What are the dishes prepared using green cardamom and clove?
59
+ - Can you suggest recipes that include green chili pepper and grated coconut?
60
+ - source_sentence: 'Recipes that can be made using red onion and paprika: Breakfast
61
+ Potatoes with Sausage, Peri Peri Chicken Pasta, Scrambled Egg Curry, Chili Mac
62
+ & Cheese, Tomato Chicken Curry'
63
+ sentences:
64
+ - Are there dishes that closely resemble spiced potatoes & fenugreek (aloo methi)?
65
+ - What recipes incorporate black pepper and habanero chili in their ingredients?
66
+ - What are some ways to use red onion and paprika in recipes?
67
+ model-index:
68
+ - name: SentenceTransformer
69
+ results:
70
+ - task:
71
+ type: information-retrieval
72
+ name: Information Retrieval
73
+ dataset:
74
+ name: dim 384
75
+ type: dim_384
76
+ metrics:
77
+ - type: cosine_accuracy@1
78
+ value: 0.9704069050554871
79
+ name: Cosine Accuracy@1
80
+ - type: cosine_accuracy@3
81
+ value: 0.9926017262638718
82
+ name: Cosine Accuracy@3
83
+ - type: cosine_accuracy@5
84
+ value: 0.998766954377312
85
+ name: Cosine Accuracy@5
86
+ - type: cosine_accuracy@10
87
+ value: 0.9993834771886559
88
+ name: Cosine Accuracy@10
89
+ - type: cosine_precision@1
90
+ value: 0.9704069050554871
91
+ name: Cosine Precision@1
92
+ - type: cosine_precision@3
93
+ value: 0.33086724208795726
94
+ name: Cosine Precision@3
95
+ - type: cosine_precision@5
96
+ value: 0.1997533908754624
97
+ name: Cosine Precision@5
98
+ - type: cosine_precision@10
99
+ value: 0.09993834771886559
100
+ name: Cosine Precision@10
101
+ - type: cosine_recall@1
102
+ value: 0.9704069050554871
103
+ name: Cosine Recall@1
104
+ - type: cosine_recall@3
105
+ value: 0.9926017262638718
106
+ name: Cosine Recall@3
107
+ - type: cosine_recall@5
108
+ value: 0.998766954377312
109
+ name: Cosine Recall@5
110
+ - type: cosine_recall@10
111
+ value: 0.9993834771886559
112
+ name: Cosine Recall@10
113
+ - type: cosine_ndcg@10
114
+ value: 0.9865445143406266
115
+ name: Cosine Ndcg@10
116
+ - type: cosine_mrr@10
117
+ value: 0.9822089131583582
118
+ name: Cosine Mrr@10
119
+ - type: cosine_map@100
120
+ value: 0.9822089131583582
121
+ name: Cosine Map@100
122
+ - task:
123
+ type: information-retrieval
124
+ name: Information Retrieval
125
+ dataset:
126
+ name: dim 256
127
+ type: dim_256
128
+ metrics:
129
+ - type: cosine_accuracy@1
130
+ value: 0.9728729963008631
131
+ name: Cosine Accuracy@1
132
+ - type: cosine_accuracy@3
133
+ value: 0.9932182490752158
134
+ name: Cosine Accuracy@3
135
+ - type: cosine_accuracy@5
136
+ value: 0.998766954377312
137
+ name: Cosine Accuracy@5
138
+ - type: cosine_accuracy@10
139
+ value: 0.9993834771886559
140
+ name: Cosine Accuracy@10
141
+ - type: cosine_precision@1
142
+ value: 0.9728729963008631
143
+ name: Cosine Precision@1
144
+ - type: cosine_precision@3
145
+ value: 0.3310727496917386
146
+ name: Cosine Precision@3
147
+ - type: cosine_precision@5
148
+ value: 0.1997533908754624
149
+ name: Cosine Precision@5
150
+ - type: cosine_precision@10
151
+ value: 0.09993834771886559
152
+ name: Cosine Precision@10
153
+ - type: cosine_recall@1
154
+ value: 0.9728729963008631
155
+ name: Cosine Recall@1
156
+ - type: cosine_recall@3
157
+ value: 0.9932182490752158
158
+ name: Cosine Recall@3
159
+ - type: cosine_recall@5
160
+ value: 0.998766954377312
161
+ name: Cosine Recall@5
162
+ - type: cosine_recall@10
163
+ value: 0.9993834771886559
164
+ name: Cosine Recall@10
165
+ - type: cosine_ndcg@10
166
+ value: 0.9875922381599775
167
+ name: Cosine Ndcg@10
168
+ - type: cosine_mrr@10
169
+ value: 0.9836107685984382
170
+ name: Cosine Mrr@10
171
+ - type: cosine_map@100
172
+ value: 0.9836107685984381
173
+ name: Cosine Map@100
174
+ - task:
175
+ type: information-retrieval
176
+ name: Information Retrieval
177
+ dataset:
178
+ name: dim 128
179
+ type: dim_128
180
+ metrics:
181
+ - type: cosine_accuracy@1
182
+ value: 0.9722564734895192
183
+ name: Cosine Accuracy@1
184
+ - type: cosine_accuracy@3
185
+ value: 0.9944512946979038
186
+ name: Cosine Accuracy@3
187
+ - type: cosine_accuracy@5
188
+ value: 0.9993834771886559
189
+ name: Cosine Accuracy@5
190
+ - type: cosine_accuracy@10
191
+ value: 0.9993834771886559
192
+ name: Cosine Accuracy@10
193
+ - type: cosine_precision@1
194
+ value: 0.9722564734895192
195
+ name: Cosine Precision@1
196
+ - type: cosine_precision@3
197
+ value: 0.33148376489930126
198
+ name: Cosine Precision@3
199
+ - type: cosine_precision@5
200
+ value: 0.19987669543773118
201
+ name: Cosine Precision@5
202
+ - type: cosine_precision@10
203
+ value: 0.09993834771886559
204
+ name: Cosine Precision@10
205
+ - type: cosine_recall@1
206
+ value: 0.9722564734895192
207
+ name: Cosine Recall@1
208
+ - type: cosine_recall@3
209
+ value: 0.9944512946979038
210
+ name: Cosine Recall@3
211
+ - type: cosine_recall@5
212
+ value: 0.9993834771886559
213
+ name: Cosine Recall@5
214
+ - type: cosine_recall@10
215
+ value: 0.9993834771886559
216
+ name: Cosine Recall@10
217
+ - type: cosine_ndcg@10
218
+ value: 0.9873346466071089
219
+ name: Cosine Ndcg@10
220
+ - type: cosine_mrr@10
221
+ value: 0.9832511302918208
222
+ name: Cosine Mrr@10
223
+ - type: cosine_map@100
224
+ value: 0.9832511302918209
225
+ name: Cosine Map@100
226
+ - task:
227
+ type: information-retrieval
228
+ name: Information Retrieval
229
+ dataset:
230
+ name: dim 64
231
+ type: dim_64
232
+ metrics:
233
+ - type: cosine_accuracy@1
234
+ value: 0.9704069050554871
235
+ name: Cosine Accuracy@1
236
+ - type: cosine_accuracy@3
237
+ value: 0.9944512946979038
238
+ name: Cosine Accuracy@3
239
+ - type: cosine_accuracy@5
240
+ value: 0.9993834771886559
241
+ name: Cosine Accuracy@5
242
+ - type: cosine_accuracy@10
243
+ value: 0.9993834771886559
244
+ name: Cosine Accuracy@10
245
+ - type: cosine_precision@1
246
+ value: 0.9704069050554871
247
+ name: Cosine Precision@1
248
+ - type: cosine_precision@3
249
+ value: 0.33148376489930126
250
+ name: Cosine Precision@3
251
+ - type: cosine_precision@5
252
+ value: 0.19987669543773118
253
+ name: Cosine Precision@5
254
+ - type: cosine_precision@10
255
+ value: 0.09993834771886559
256
+ name: Cosine Precision@10
257
+ - type: cosine_recall@1
258
+ value: 0.9704069050554871
259
+ name: Cosine Recall@1
260
+ - type: cosine_recall@3
261
+ value: 0.9944512946979038
262
+ name: Cosine Recall@3
263
+ - type: cosine_recall@5
264
+ value: 0.9993834771886559
265
+ name: Cosine Recall@5
266
+ - type: cosine_recall@10
267
+ value: 0.9993834771886559
268
+ name: Cosine Recall@10
269
+ - type: cosine_ndcg@10
270
+ value: 0.9867057287670639
271
+ name: Cosine Ndcg@10
272
+ - type: cosine_mrr@10
273
+ value: 0.9823982737361283
274
+ name: Cosine Mrr@10
275
+ - type: cosine_map@100
276
+ value: 0.9823982737361281
277
+ name: Cosine Map@100
278
+ - task:
279
+ type: information-retrieval
280
+ name: Information Retrieval
281
+ dataset:
282
+ name: dim 32
283
+ type: dim_32
284
+ metrics:
285
+ - type: cosine_accuracy@1
286
+ value: 0.971023427866831
287
+ name: Cosine Accuracy@1
288
+ - type: cosine_accuracy@3
289
+ value: 0.9950678175092479
290
+ name: Cosine Accuracy@3
291
+ - type: cosine_accuracy@5
292
+ value: 0.9993834771886559
293
+ name: Cosine Accuracy@5
294
+ - type: cosine_accuracy@10
295
+ value: 0.9993834771886559
296
+ name: Cosine Accuracy@10
297
+ - type: cosine_precision@1
298
+ value: 0.971023427866831
299
+ name: Cosine Precision@1
300
+ - type: cosine_precision@3
301
+ value: 0.3316892725030826
302
+ name: Cosine Precision@3
303
+ - type: cosine_precision@5
304
+ value: 0.19987669543773118
305
+ name: Cosine Precision@5
306
+ - type: cosine_precision@10
307
+ value: 0.09993834771886559
308
+ name: Cosine Precision@10
309
+ - type: cosine_recall@1
310
+ value: 0.971023427866831
311
+ name: Cosine Recall@1
312
+ - type: cosine_recall@3
313
+ value: 0.9950678175092479
314
+ name: Cosine Recall@3
315
+ - type: cosine_recall@5
316
+ value: 0.9993834771886559
317
+ name: Cosine Recall@5
318
+ - type: cosine_recall@10
319
+ value: 0.9993834771886559
320
+ name: Cosine Recall@10
321
+ - type: cosine_ndcg@10
322
+ value: 0.9872988931953259
323
+ name: Cosine Ndcg@10
324
+ - type: cosine_mrr@10
325
+ value: 0.9831689272503082
326
+ name: Cosine Mrr@10
327
+ - type: cosine_map@100
328
+ value: 0.9831689272503081
329
+ name: Cosine Map@100
330
+ ---
331
+
332
+ # SentenceTransformer
333
+
334
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
335
+
336
+ ## Model Details
337
+
338
+ ### Model Description
339
+ - **Model Type:** Sentence Transformer
340
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
341
+ - **Maximum Sequence Length:** 512 tokens
342
+ - **Output Dimensionality:** 384 tokens
343
+ - **Similarity Function:** Cosine Similarity
344
+ <!-- - **Training Dataset:** Unknown -->
345
+ <!-- - **Language:** Unknown -->
346
+ <!-- - **License:** Unknown -->
347
+
348
+ ### Model Sources
349
+
350
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
351
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
352
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
353
+
354
+ ### Full Model Architecture
355
+
356
+ ```
357
+ SentenceTransformer(
358
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
359
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
360
+ (2): Normalize()
361
+ )
362
+ ```
363
+
364
+ ## Usage
365
+
366
+ ### Direct Usage (Sentence Transformers)
367
+
368
+ First install the Sentence Transformers library:
369
+
370
+ ```bash
371
+ pip install -U sentence-transformers
372
+ ```
373
+
374
+ Then you can load this model and run inference.
375
+ ```python
376
+ from sentence_transformers import SentenceTransformer
377
+
378
+ # Download from the 🤗 Hub
379
+ model = SentenceTransformer("Adi-0-0-Gupta/Embedding-v1")
380
+ # Run inference
381
+ sentences = [
382
+ 'Recipes that can be made using red onion and paprika: Breakfast Potatoes with Sausage, Peri Peri Chicken Pasta, Scrambled Egg Curry, Chili Mac & Cheese, Tomato Chicken Curry',
383
+ 'What are some ways to use red onion and paprika in recipes?',
384
+ 'Are there dishes that closely resemble spiced potatoes & fenugreek (aloo methi)?',
385
+ ]
386
+ embeddings = model.encode(sentences)
387
+ print(embeddings.shape)
388
+ # [3, 384]
389
+
390
+ # Get the similarity scores for the embeddings
391
+ similarities = model.similarity(embeddings, embeddings)
392
+ print(similarities.shape)
393
+ # [3, 3]
394
+ ```
395
+
396
+ <!--
397
+ ### Direct Usage (Transformers)
398
+
399
+ <details><summary>Click to see the direct usage in Transformers</summary>
400
+
401
+ </details>
402
+ -->
403
+
404
+ <!--
405
+ ### Downstream Usage (Sentence Transformers)
406
+
407
+ You can finetune this model on your own dataset.
408
+
409
+ <details><summary>Click to expand</summary>
410
+
411
+ </details>
412
+ -->
413
+
414
+ <!--
415
+ ### Out-of-Scope Use
416
+
417
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
418
+ -->
419
+
420
+ ## Evaluation
421
+
422
+ ### Metrics
423
+
424
+ #### Information Retrieval
425
+ * Dataset: `dim_384`
426
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
427
+
428
+ | Metric | Value |
429
+ |:--------------------|:-----------|
430
+ | cosine_accuracy@1 | 0.9704 |
431
+ | cosine_accuracy@3 | 0.9926 |
432
+ | cosine_accuracy@5 | 0.9988 |
433
+ | cosine_accuracy@10 | 0.9994 |
434
+ | cosine_precision@1 | 0.9704 |
435
+ | cosine_precision@3 | 0.3309 |
436
+ | cosine_precision@5 | 0.1998 |
437
+ | cosine_precision@10 | 0.0999 |
438
+ | cosine_recall@1 | 0.9704 |
439
+ | cosine_recall@3 | 0.9926 |
440
+ | cosine_recall@5 | 0.9988 |
441
+ | cosine_recall@10 | 0.9994 |
442
+ | cosine_ndcg@10 | 0.9865 |
443
+ | cosine_mrr@10 | 0.9822 |
444
+ | **cosine_map@100** | **0.9822** |
445
+
446
+ #### Information Retrieval
447
+ * Dataset: `dim_256`
448
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
449
+
450
+ | Metric | Value |
451
+ |:--------------------|:-----------|
452
+ | cosine_accuracy@1 | 0.9729 |
453
+ | cosine_accuracy@3 | 0.9932 |
454
+ | cosine_accuracy@5 | 0.9988 |
455
+ | cosine_accuracy@10 | 0.9994 |
456
+ | cosine_precision@1 | 0.9729 |
457
+ | cosine_precision@3 | 0.3311 |
458
+ | cosine_precision@5 | 0.1998 |
459
+ | cosine_precision@10 | 0.0999 |
460
+ | cosine_recall@1 | 0.9729 |
461
+ | cosine_recall@3 | 0.9932 |
462
+ | cosine_recall@5 | 0.9988 |
463
+ | cosine_recall@10 | 0.9994 |
464
+ | cosine_ndcg@10 | 0.9876 |
465
+ | cosine_mrr@10 | 0.9836 |
466
+ | **cosine_map@100** | **0.9836** |
467
+
468
+ #### Information Retrieval
469
+ * Dataset: `dim_128`
470
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
471
+
472
+ | Metric | Value |
473
+ |:--------------------|:-----------|
474
+ | cosine_accuracy@1 | 0.9723 |
475
+ | cosine_accuracy@3 | 0.9945 |
476
+ | cosine_accuracy@5 | 0.9994 |
477
+ | cosine_accuracy@10 | 0.9994 |
478
+ | cosine_precision@1 | 0.9723 |
479
+ | cosine_precision@3 | 0.3315 |
480
+ | cosine_precision@5 | 0.1999 |
481
+ | cosine_precision@10 | 0.0999 |
482
+ | cosine_recall@1 | 0.9723 |
483
+ | cosine_recall@3 | 0.9945 |
484
+ | cosine_recall@5 | 0.9994 |
485
+ | cosine_recall@10 | 0.9994 |
486
+ | cosine_ndcg@10 | 0.9873 |
487
+ | cosine_mrr@10 | 0.9833 |
488
+ | **cosine_map@100** | **0.9833** |
489
+
490
+ #### Information Retrieval
491
+ * Dataset: `dim_64`
492
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
493
+
494
+ | Metric | Value |
495
+ |:--------------------|:-----------|
496
+ | cosine_accuracy@1 | 0.9704 |
497
+ | cosine_accuracy@3 | 0.9945 |
498
+ | cosine_accuracy@5 | 0.9994 |
499
+ | cosine_accuracy@10 | 0.9994 |
500
+ | cosine_precision@1 | 0.9704 |
501
+ | cosine_precision@3 | 0.3315 |
502
+ | cosine_precision@5 | 0.1999 |
503
+ | cosine_precision@10 | 0.0999 |
504
+ | cosine_recall@1 | 0.9704 |
505
+ | cosine_recall@3 | 0.9945 |
506
+ | cosine_recall@5 | 0.9994 |
507
+ | cosine_recall@10 | 0.9994 |
508
+ | cosine_ndcg@10 | 0.9867 |
509
+ | cosine_mrr@10 | 0.9824 |
510
+ | **cosine_map@100** | **0.9824** |
511
+
512
+ #### Information Retrieval
513
+ * Dataset: `dim_32`
514
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
515
+
516
+ | Metric | Value |
517
+ |:--------------------|:-----------|
518
+ | cosine_accuracy@1 | 0.971 |
519
+ | cosine_accuracy@3 | 0.9951 |
520
+ | cosine_accuracy@5 | 0.9994 |
521
+ | cosine_accuracy@10 | 0.9994 |
522
+ | cosine_precision@1 | 0.971 |
523
+ | cosine_precision@3 | 0.3317 |
524
+ | cosine_precision@5 | 0.1999 |
525
+ | cosine_precision@10 | 0.0999 |
526
+ | cosine_recall@1 | 0.971 |
527
+ | cosine_recall@3 | 0.9951 |
528
+ | cosine_recall@5 | 0.9994 |
529
+ | cosine_recall@10 | 0.9994 |
530
+ | cosine_ndcg@10 | 0.9873 |
531
+ | cosine_mrr@10 | 0.9832 |
532
+ | **cosine_map@100** | **0.9832** |
533
+
534
+ <!--
535
+ ## Bias, Risks and Limitations
536
+
537
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
538
+ -->
539
+
540
+ <!--
541
+ ### Recommendations
542
+
543
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
544
+ -->
545
+
546
+ ## Training Details
547
+
548
+ ### Training Dataset
549
+
550
+ #### Unnamed Dataset
551
+
552
+
553
+ * Size: 14,593 training samples
554
+ * Columns: <code>positive</code> and <code>anchor</code>
555
+ * Approximate statistics based on the first 1000 samples:
556
+ | | positive | anchor |
557
+ |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
558
+ | type | string | string |
559
+ | details | <ul><li>min: 11 tokens</li><li>mean: 53.46 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.83 tokens</li><li>max: 32 tokens</li></ul> |
560
+ * Samples:
561
+ | positive | anchor |
562
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
563
+ | <code>Calories information of Hyderabadi Chicken Masala, based on different serving sizes: Serving 1 - 345 calories, Serving 2 - 580 calories, Serving 3 - 1220 calories, Serving 4 - 1450 calories</code> | <code>What’s the calorie content of Hyderabadi Chicken Masala?</code> |
564
+ | <code>Recipes that can be made using dried herb mix and onion powder: Chorizo Queso Soup, Cheesy Chicken & Broccoli</code> | <code>What are some food items made using dried herb mix and onion powder?</code> |
565
+ | <code>Recipes that can be made using roasted semolina/bombay rava and saffron: Rashmi's Kesari Bath, Pineapple Kesari Bath</code> | <code>What recipes have roasted semolina/bombay rava and saffron in them?</code> |
566
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
567
+ ```json
568
+ {
569
+ "loss": "MultipleNegativesRankingLoss",
570
+ "matryoshka_dims": [
571
+ 384,
572
+ 256,
573
+ 128,
574
+ 64,
575
+ 32
576
+ ],
577
+ "matryoshka_weights": [
578
+ 1,
579
+ 1,
580
+ 1,
581
+ 1,
582
+ 1
583
+ ],
584
+ "n_dims_per_step": -1
585
+ }
586
+ ```
587
+
588
+ ### Training Hyperparameters
589
+ #### Non-Default Hyperparameters
590
+
591
+ - `eval_strategy`: epoch
592
+ - `per_device_train_batch_size`: 32
593
+ - `per_device_eval_batch_size`: 32
594
+ - `gradient_accumulation_steps`: 16
595
+ - `learning_rate`: 1e-05
596
+ - `num_train_epochs`: 20
597
+ - `lr_scheduler_type`: cosine
598
+ - `warmup_ratio`: 0.1
599
+ - `bf16`: True
600
+ - `tf32`: True
601
+ - `load_best_model_at_end`: True
602
+ - `optim`: adamw_torch_fused
603
+ - `batch_sampler`: no_duplicates
604
+
605
+ #### All Hyperparameters
606
+ <details><summary>Click to expand</summary>
607
+
608
+ - `overwrite_output_dir`: False
609
+ - `do_predict`: False
610
+ - `eval_strategy`: epoch
611
+ - `prediction_loss_only`: True
612
+ - `per_device_train_batch_size`: 32
613
+ - `per_device_eval_batch_size`: 32
614
+ - `per_gpu_train_batch_size`: None
615
+ - `per_gpu_eval_batch_size`: None
616
+ - `gradient_accumulation_steps`: 16
617
+ - `eval_accumulation_steps`: None
618
+ - `learning_rate`: 1e-05
619
+ - `weight_decay`: 0.0
620
+ - `adam_beta1`: 0.9
621
+ - `adam_beta2`: 0.999
622
+ - `adam_epsilon`: 1e-08
623
+ - `max_grad_norm`: 1.0
624
+ - `num_train_epochs`: 20
625
+ - `max_steps`: -1
626
+ - `lr_scheduler_type`: cosine
627
+ - `lr_scheduler_kwargs`: {}
628
+ - `warmup_ratio`: 0.1
629
+ - `warmup_steps`: 0
630
+ - `log_level`: passive
631
+ - `log_level_replica`: warning
632
+ - `log_on_each_node`: True
633
+ - `logging_nan_inf_filter`: True
634
+ - `save_safetensors`: True
635
+ - `save_on_each_node`: False
636
+ - `save_only_model`: False
637
+ - `restore_callback_states_from_checkpoint`: False
638
+ - `no_cuda`: False
639
+ - `use_cpu`: False
640
+ - `use_mps_device`: False
641
+ - `seed`: 42
642
+ - `data_seed`: None
643
+ - `jit_mode_eval`: False
644
+ - `use_ipex`: False
645
+ - `bf16`: True
646
+ - `fp16`: False
647
+ - `fp16_opt_level`: O1
648
+ - `half_precision_backend`: auto
649
+ - `bf16_full_eval`: False
650
+ - `fp16_full_eval`: False
651
+ - `tf32`: True
652
+ - `local_rank`: 0
653
+ - `ddp_backend`: None
654
+ - `tpu_num_cores`: None
655
+ - `tpu_metrics_debug`: False
656
+ - `debug`: []
657
+ - `dataloader_drop_last`: False
658
+ - `dataloader_num_workers`: 0
659
+ - `dataloader_prefetch_factor`: None
660
+ - `past_index`: -1
661
+ - `disable_tqdm`: False
662
+ - `remove_unused_columns`: True
663
+ - `label_names`: None
664
+ - `load_best_model_at_end`: True
665
+ - `ignore_data_skip`: False
666
+ - `fsdp`: []
667
+ - `fsdp_min_num_params`: 0
668
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
669
+ - `fsdp_transformer_layer_cls_to_wrap`: None
670
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
671
+ - `deepspeed`: None
672
+ - `label_smoothing_factor`: 0.0
673
+ - `optim`: adamw_torch_fused
674
+ - `optim_args`: None
675
+ - `adafactor`: False
676
+ - `group_by_length`: False
677
+ - `length_column_name`: length
678
+ - `ddp_find_unused_parameters`: None
679
+ - `ddp_bucket_cap_mb`: None
680
+ - `ddp_broadcast_buffers`: False
681
+ - `dataloader_pin_memory`: True
682
+ - `dataloader_persistent_workers`: False
683
+ - `skip_memory_metrics`: True
684
+ - `use_legacy_prediction_loop`: False
685
+ - `push_to_hub`: False
686
+ - `resume_from_checkpoint`: None
687
+ - `hub_model_id`: None
688
+ - `hub_strategy`: every_save
689
+ - `hub_private_repo`: False
690
+ - `hub_always_push`: False
691
+ - `gradient_checkpointing`: False
692
+ - `gradient_checkpointing_kwargs`: None
693
+ - `include_inputs_for_metrics`: False
694
+ - `eval_do_concat_batches`: True
695
+ - `fp16_backend`: auto
696
+ - `push_to_hub_model_id`: None
697
+ - `push_to_hub_organization`: None
698
+ - `mp_parameters`:
699
+ - `auto_find_batch_size`: False
700
+ - `full_determinism`: False
701
+ - `torchdynamo`: None
702
+ - `ray_scope`: last
703
+ - `ddp_timeout`: 1800
704
+ - `torch_compile`: False
705
+ - `torch_compile_backend`: None
706
+ - `torch_compile_mode`: None
707
+ - `dispatch_batches`: None
708
+ - `split_batches`: None
709
+ - `include_tokens_per_second`: False
710
+ - `include_num_input_tokens_seen`: False
711
+ - `neftune_noise_alpha`: None
712
+ - `optim_target_modules`: None
713
+ - `batch_eval_metrics`: False
714
+ - `batch_sampler`: no_duplicates
715
+ - `multi_dataset_batch_sampler`: proportional
716
+
717
+ </details>
718
+
719
+ ### Training Logs
720
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_32_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
721
+ |:-------:|:----:|:-------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|:---------------------:|
722
+ | 0.3501 | 10 | 0.0066 | - | - | - | - | - |
723
+ | 0.7002 | 20 | 0.0056 | - | - | - | - | - |
724
+ | 0.9803 | 28 | - | 0.9746 | 0.9771 | 0.9776 | 0.9758 | 0.9763 |
725
+ | 1.0503 | 30 | 0.0057 | - | - | - | - | - |
726
+ | 1.4004 | 40 | 0.0048 | - | - | - | - | - |
727
+ | 1.7505 | 50 | 0.0039 | - | - | - | - | - |
728
+ | 1.9956 | 57 | - | 0.9783 | 0.9787 | 0.9815 | 0.9788 | 0.9793 |
729
+ | 2.1007 | 60 | 0.0046 | - | - | - | - | - |
730
+ | 2.4508 | 70 | 0.0035 | - | - | - | - | - |
731
+ | 2.8009 | 80 | 0.0028 | - | - | - | - | - |
732
+ | 2.9759 | 85 | - | 0.9818 | 0.9811 | 0.9836 | 0.9803 | 0.9823 |
733
+ | 3.1510 | 90 | 0.0036 | - | - | - | - | - |
734
+ | 3.5011 | 100 | 0.0033 | - | - | - | - | - |
735
+ | 3.8512 | 110 | 0.0026 | - | - | - | - | - |
736
+ | 3.9912 | 114 | - | 0.9814 | 0.9818 | 0.9844 | 0.9814 | 0.9821 |
737
+ | 4.2013 | 120 | 0.0025 | - | - | - | - | - |
738
+ | 4.5514 | 130 | 0.003 | - | - | - | - | - |
739
+ | 4.9015 | 140 | 0.0027 | - | - | - | - | - |
740
+ | 4.9716 | 142 | - | 0.9825 | 0.9819 | 0.9844 | 0.9823 | 0.9825 |
741
+ | 5.2516 | 150 | 0.0024 | - | - | - | - | - |
742
+ | 5.6018 | 160 | 0.0023 | - | - | - | - | - |
743
+ | 5.9519 | 170 | 0.0024 | - | - | - | - | - |
744
+ | 5.9869 | 171 | - | 0.9831 | 0.9826 | 0.9846 | 0.9818 | 0.9831 |
745
+ | 6.3020 | 180 | 0.0025 | - | - | - | - | - |
746
+ | 6.6521 | 190 | 0.0025 | - | - | - | - | - |
747
+ | 6.9672 | 199 | - | 0.9830 | 0.9825 | 0.9844 | 0.9823 | 0.9831 |
748
+ | 7.0022 | 200 | 0.0019 | - | - | - | - | - |
749
+ | 7.3523 | 210 | 0.0022 | - | - | - | - | - |
750
+ | 7.7024 | 220 | 0.0026 | - | - | - | - | - |
751
+ | 7.9825 | 228 | - | 0.9828 | 0.9825 | 0.9836 | 0.9821 | 0.9821 |
752
+ | 8.0525 | 230 | 0.0022 | - | - | - | - | - |
753
+ | 8.4026 | 240 | 0.0021 | - | - | - | - | - |
754
+ | 8.7527 | 250 | 0.0021 | - | - | - | - | - |
755
+ | 8.9978 | 257 | - | 0.9827 | 0.9826 | 0.9848 | 0.9827 | 0.9827 |
756
+ | 9.1028 | 260 | 0.0025 | - | - | - | - | - |
757
+ | 9.4530 | 270 | 0.0022 | - | - | - | - | - |
758
+ | 9.8031 | 280 | 0.0019 | - | - | - | - | - |
759
+ | 9.9781 | 285 | - | 0.9832 | 0.9833 | 0.9858 | 0.9825 | 0.9834 |
760
+ | 10.1532 | 290 | 0.0021 | - | - | - | - | - |
761
+ | 10.5033 | 300 | 0.0019 | - | - | - | - | - |
762
+ | 10.8534 | 310 | 0.0024 | - | - | - | - | - |
763
+ | 10.9934 | 314 | - | 0.9830 | 0.9827 | 0.9850 | 0.9825 | 0.9829 |
764
+ | 11.2035 | 320 | 0.0017 | - | - | - | - | - |
765
+ | 11.5536 | 330 | 0.0017 | - | - | - | - | - |
766
+ | 11.9037 | 340 | 0.0018 | - | - | - | - | - |
767
+ | 11.9737 | 342 | - | 0.9827 | 0.9835 | 0.9841 | 0.9826 | 0.9827 |
768
+ | 12.2538 | 350 | 0.0018 | - | - | - | - | - |
769
+ | 12.6039 | 360 | 0.0018 | - | - | - | - | - |
770
+ | 12.9540 | 370 | 0.0023 | - | - | - | - | - |
771
+ | 12.9891 | 371 | - | 0.9828 | 0.9834 | 0.9832 | 0.9826 | 0.9823 |
772
+ | 13.3042 | 380 | 0.0017 | - | - | - | - | - |
773
+ | 13.6543 | 390 | 0.0018 | - | - | - | - | - |
774
+ | 13.9694 | 399 | - | 0.9830 | 0.9831 | 0.9838 | 0.9820 | 0.9826 |
775
+ | 14.0044 | 400 | 0.0016 | - | - | - | - | - |
776
+ | 14.3545 | 410 | 0.0018 | - | - | - | - | - |
777
+ | 14.7046 | 420 | 0.0018 | - | - | - | - | - |
778
+ | 14.9847 | 428 | - | 0.9827 | 0.9825 | 0.9832 | 0.9816 | 0.9826 |
779
+ | 15.0547 | 430 | 0.0018 | - | - | - | - | - |
780
+ | 15.4048 | 440 | 0.0015 | - | - | - | - | - |
781
+ | 15.7549 | 450 | 0.0017 | - | - | - | - | - |
782
+ | 16.0 | 457 | - | 0.9833 | 0.9836 | 0.9832 | 0.9822 | 0.9824 |
783
+
784
+
785
+ ### Framework Versions
786
+ - Python: 3.10.12
787
+ - Sentence Transformers: 3.0.1
788
+ - Transformers: 4.41.2
789
+ - PyTorch: 2.1.2+cu121
790
+ - Accelerate: 0.31.0
791
+ - Datasets: 2.19.1
792
+ - Tokenizers: 0.19.1
793
+
794
+ ## Citation
795
+
796
+ ### BibTeX
797
+
798
+ #### Sentence Transformers
799
+ ```bibtex
800
+ @inproceedings{reimers-2019-sentence-bert,
801
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
802
+ author = "Reimers, Nils and Gurevych, Iryna",
803
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
804
+ month = "11",
805
+ year = "2019",
806
+ publisher = "Association for Computational Linguistics",
807
+ url = "https://arxiv.org/abs/1908.10084",
808
+ }
809
+ ```
810
+
811
+ #### MatryoshkaLoss
812
+ ```bibtex
813
+ @misc{kusupati2024matryoshka,
814
+ title={Matryoshka Representation Learning},
815
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
816
+ year={2024},
817
+ eprint={2205.13147},
818
+ archivePrefix={arXiv},
819
+ primaryClass={cs.LG}
820
+ }
821
+ ```
822
+
823
+ #### MultipleNegativesRankingLoss
824
+ ```bibtex
825
+ @misc{henderson2017efficient,
826
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
827
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
828
+ year={2017},
829
+ eprint={1705.00652},
830
+ archivePrefix={arXiv},
831
+ primaryClass={cs.CL}
832
+ }
833
+ ```
834
+
835
+ <!--
836
+ ## Glossary
837
+
838
+ *Clearly define terms in order to be accessible across audiences.*
839
+ -->
840
+
841
+ <!--
842
+ ## Model Card Authors
843
+
844
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
845
+ -->
846
+
847
+ <!--
848
+ ## Model Card Contact
849
+
850
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
851
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../Output/Finetuned/checkpoint-457/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.41.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc55e025fd21dbda8e1dc0872cf532ab0b0a5cc8677cac20ac605d3efd996d96
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff