Adi-0-0-Gupta
commited on
Commit
•
2dbfe2b
1
Parent(s):
0594aca
Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +851 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,851 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets: []
|
3 |
+
language: []
|
4 |
+
library_name: sentence-transformers
|
5 |
+
metrics:
|
6 |
+
- cosine_accuracy@1
|
7 |
+
- cosine_accuracy@3
|
8 |
+
- cosine_accuracy@5
|
9 |
+
- cosine_accuracy@10
|
10 |
+
- cosine_precision@1
|
11 |
+
- cosine_precision@3
|
12 |
+
- cosine_precision@5
|
13 |
+
- cosine_precision@10
|
14 |
+
- cosine_recall@1
|
15 |
+
- cosine_recall@3
|
16 |
+
- cosine_recall@5
|
17 |
+
- cosine_recall@10
|
18 |
+
- cosine_ndcg@10
|
19 |
+
- cosine_mrr@10
|
20 |
+
- cosine_map@100
|
21 |
+
pipeline_tag: sentence-similarity
|
22 |
+
tags:
|
23 |
+
- sentence-transformers
|
24 |
+
- sentence-similarity
|
25 |
+
- feature-extraction
|
26 |
+
- generated_from_trainer
|
27 |
+
- dataset_size:14593
|
28 |
+
- loss:MatryoshkaLoss
|
29 |
+
- loss:MultipleNegativesRankingLoss
|
30 |
+
widget:
|
31 |
+
- source_sentence: 'Macro ingredients needed to cook Poha: Orange Carrot, French Bean,
|
32 |
+
Fresh Green Pea, Medium Poha, Red Onion, Curry Leaf, Green Chili Pepper'
|
33 |
+
sentences:
|
34 |
+
- Can you list recipes that contain canned chickpea and canned black bean?
|
35 |
+
- What are the leading macro ingredients in Pigeon Pea Curry (Toor Dal)?
|
36 |
+
- What macro ingredients form the base of Poha?
|
37 |
+
- source_sentence: 'I do have some good recommendations for you! Here are few good
|
38 |
+
alternatives to kashmiri pulao:
|
39 |
+
|
40 |
+
Kashmiri Dum Aloo, Shivani''s Kashmiri Dum Aloo, Chicken Pulao, Chicken Rezala,
|
41 |
+
Chicken Kheema Masala, Hyderabadi Chicken Masala, Masala Khichdi, Lentils and
|
42 |
+
Rice (Dal Chawal), Homestyle Vegetable Pulao'
|
43 |
+
sentences:
|
44 |
+
- What recipes are comparable to kashmiri pulao in flavor profile?
|
45 |
+
- Can you give me step-by-step instructions to cook Hariyali Chicken Curry?
|
46 |
+
- What are some recipes that utilize baking soda and olive oil effectively?
|
47 |
+
- source_sentence: 'Garnishing tip for Yellow Rice: Sprinkle with chopped cilantro.'
|
48 |
+
sentences:
|
49 |
+
- How can I make Yellow Rice look appealing with garnishes?
|
50 |
+
- Describe General Tso's Tofu for me.
|
51 |
+
- What are the best garnishing tips for Paneer Tikka Masala?
|
52 |
+
- source_sentence: 'Recipes that can be made using green chili pepper and grated coconut:
|
53 |
+
Kerala Mix Vegetables (Aviyal), Carrot Poriyal, Cauliflower Poriyal, Beetroot
|
54 |
+
Poriyal, Maithilee''s Fish Curry, Mix Vegetable Poriyal, Ivy Gourd Curry (Tindora
|
55 |
+
Masala), Spiced Indian Moth Beans (Matki Usal), Fish Curry, Andhra Garlic Chicken'
|
56 |
+
sentences:
|
57 |
+
- What are the culinary uses of ground pork and chayote?
|
58 |
+
- What are the dishes prepared using green cardamom and clove?
|
59 |
+
- Can you suggest recipes that include green chili pepper and grated coconut?
|
60 |
+
- source_sentence: 'Recipes that can be made using red onion and paprika: Breakfast
|
61 |
+
Potatoes with Sausage, Peri Peri Chicken Pasta, Scrambled Egg Curry, Chili Mac
|
62 |
+
& Cheese, Tomato Chicken Curry'
|
63 |
+
sentences:
|
64 |
+
- Are there dishes that closely resemble spiced potatoes & fenugreek (aloo methi)?
|
65 |
+
- What recipes incorporate black pepper and habanero chili in their ingredients?
|
66 |
+
- What are some ways to use red onion and paprika in recipes?
|
67 |
+
model-index:
|
68 |
+
- name: SentenceTransformer
|
69 |
+
results:
|
70 |
+
- task:
|
71 |
+
type: information-retrieval
|
72 |
+
name: Information Retrieval
|
73 |
+
dataset:
|
74 |
+
name: dim 384
|
75 |
+
type: dim_384
|
76 |
+
metrics:
|
77 |
+
- type: cosine_accuracy@1
|
78 |
+
value: 0.9704069050554871
|
79 |
+
name: Cosine Accuracy@1
|
80 |
+
- type: cosine_accuracy@3
|
81 |
+
value: 0.9926017262638718
|
82 |
+
name: Cosine Accuracy@3
|
83 |
+
- type: cosine_accuracy@5
|
84 |
+
value: 0.998766954377312
|
85 |
+
name: Cosine Accuracy@5
|
86 |
+
- type: cosine_accuracy@10
|
87 |
+
value: 0.9993834771886559
|
88 |
+
name: Cosine Accuracy@10
|
89 |
+
- type: cosine_precision@1
|
90 |
+
value: 0.9704069050554871
|
91 |
+
name: Cosine Precision@1
|
92 |
+
- type: cosine_precision@3
|
93 |
+
value: 0.33086724208795726
|
94 |
+
name: Cosine Precision@3
|
95 |
+
- type: cosine_precision@5
|
96 |
+
value: 0.1997533908754624
|
97 |
+
name: Cosine Precision@5
|
98 |
+
- type: cosine_precision@10
|
99 |
+
value: 0.09993834771886559
|
100 |
+
name: Cosine Precision@10
|
101 |
+
- type: cosine_recall@1
|
102 |
+
value: 0.9704069050554871
|
103 |
+
name: Cosine Recall@1
|
104 |
+
- type: cosine_recall@3
|
105 |
+
value: 0.9926017262638718
|
106 |
+
name: Cosine Recall@3
|
107 |
+
- type: cosine_recall@5
|
108 |
+
value: 0.998766954377312
|
109 |
+
name: Cosine Recall@5
|
110 |
+
- type: cosine_recall@10
|
111 |
+
value: 0.9993834771886559
|
112 |
+
name: Cosine Recall@10
|
113 |
+
- type: cosine_ndcg@10
|
114 |
+
value: 0.9865445143406266
|
115 |
+
name: Cosine Ndcg@10
|
116 |
+
- type: cosine_mrr@10
|
117 |
+
value: 0.9822089131583582
|
118 |
+
name: Cosine Mrr@10
|
119 |
+
- type: cosine_map@100
|
120 |
+
value: 0.9822089131583582
|
121 |
+
name: Cosine Map@100
|
122 |
+
- task:
|
123 |
+
type: information-retrieval
|
124 |
+
name: Information Retrieval
|
125 |
+
dataset:
|
126 |
+
name: dim 256
|
127 |
+
type: dim_256
|
128 |
+
metrics:
|
129 |
+
- type: cosine_accuracy@1
|
130 |
+
value: 0.9728729963008631
|
131 |
+
name: Cosine Accuracy@1
|
132 |
+
- type: cosine_accuracy@3
|
133 |
+
value: 0.9932182490752158
|
134 |
+
name: Cosine Accuracy@3
|
135 |
+
- type: cosine_accuracy@5
|
136 |
+
value: 0.998766954377312
|
137 |
+
name: Cosine Accuracy@5
|
138 |
+
- type: cosine_accuracy@10
|
139 |
+
value: 0.9993834771886559
|
140 |
+
name: Cosine Accuracy@10
|
141 |
+
- type: cosine_precision@1
|
142 |
+
value: 0.9728729963008631
|
143 |
+
name: Cosine Precision@1
|
144 |
+
- type: cosine_precision@3
|
145 |
+
value: 0.3310727496917386
|
146 |
+
name: Cosine Precision@3
|
147 |
+
- type: cosine_precision@5
|
148 |
+
value: 0.1997533908754624
|
149 |
+
name: Cosine Precision@5
|
150 |
+
- type: cosine_precision@10
|
151 |
+
value: 0.09993834771886559
|
152 |
+
name: Cosine Precision@10
|
153 |
+
- type: cosine_recall@1
|
154 |
+
value: 0.9728729963008631
|
155 |
+
name: Cosine Recall@1
|
156 |
+
- type: cosine_recall@3
|
157 |
+
value: 0.9932182490752158
|
158 |
+
name: Cosine Recall@3
|
159 |
+
- type: cosine_recall@5
|
160 |
+
value: 0.998766954377312
|
161 |
+
name: Cosine Recall@5
|
162 |
+
- type: cosine_recall@10
|
163 |
+
value: 0.9993834771886559
|
164 |
+
name: Cosine Recall@10
|
165 |
+
- type: cosine_ndcg@10
|
166 |
+
value: 0.9875922381599775
|
167 |
+
name: Cosine Ndcg@10
|
168 |
+
- type: cosine_mrr@10
|
169 |
+
value: 0.9836107685984382
|
170 |
+
name: Cosine Mrr@10
|
171 |
+
- type: cosine_map@100
|
172 |
+
value: 0.9836107685984381
|
173 |
+
name: Cosine Map@100
|
174 |
+
- task:
|
175 |
+
type: information-retrieval
|
176 |
+
name: Information Retrieval
|
177 |
+
dataset:
|
178 |
+
name: dim 128
|
179 |
+
type: dim_128
|
180 |
+
metrics:
|
181 |
+
- type: cosine_accuracy@1
|
182 |
+
value: 0.9722564734895192
|
183 |
+
name: Cosine Accuracy@1
|
184 |
+
- type: cosine_accuracy@3
|
185 |
+
value: 0.9944512946979038
|
186 |
+
name: Cosine Accuracy@3
|
187 |
+
- type: cosine_accuracy@5
|
188 |
+
value: 0.9993834771886559
|
189 |
+
name: Cosine Accuracy@5
|
190 |
+
- type: cosine_accuracy@10
|
191 |
+
value: 0.9993834771886559
|
192 |
+
name: Cosine Accuracy@10
|
193 |
+
- type: cosine_precision@1
|
194 |
+
value: 0.9722564734895192
|
195 |
+
name: Cosine Precision@1
|
196 |
+
- type: cosine_precision@3
|
197 |
+
value: 0.33148376489930126
|
198 |
+
name: Cosine Precision@3
|
199 |
+
- type: cosine_precision@5
|
200 |
+
value: 0.19987669543773118
|
201 |
+
name: Cosine Precision@5
|
202 |
+
- type: cosine_precision@10
|
203 |
+
value: 0.09993834771886559
|
204 |
+
name: Cosine Precision@10
|
205 |
+
- type: cosine_recall@1
|
206 |
+
value: 0.9722564734895192
|
207 |
+
name: Cosine Recall@1
|
208 |
+
- type: cosine_recall@3
|
209 |
+
value: 0.9944512946979038
|
210 |
+
name: Cosine Recall@3
|
211 |
+
- type: cosine_recall@5
|
212 |
+
value: 0.9993834771886559
|
213 |
+
name: Cosine Recall@5
|
214 |
+
- type: cosine_recall@10
|
215 |
+
value: 0.9993834771886559
|
216 |
+
name: Cosine Recall@10
|
217 |
+
- type: cosine_ndcg@10
|
218 |
+
value: 0.9873346466071089
|
219 |
+
name: Cosine Ndcg@10
|
220 |
+
- type: cosine_mrr@10
|
221 |
+
value: 0.9832511302918208
|
222 |
+
name: Cosine Mrr@10
|
223 |
+
- type: cosine_map@100
|
224 |
+
value: 0.9832511302918209
|
225 |
+
name: Cosine Map@100
|
226 |
+
- task:
|
227 |
+
type: information-retrieval
|
228 |
+
name: Information Retrieval
|
229 |
+
dataset:
|
230 |
+
name: dim 64
|
231 |
+
type: dim_64
|
232 |
+
metrics:
|
233 |
+
- type: cosine_accuracy@1
|
234 |
+
value: 0.9704069050554871
|
235 |
+
name: Cosine Accuracy@1
|
236 |
+
- type: cosine_accuracy@3
|
237 |
+
value: 0.9944512946979038
|
238 |
+
name: Cosine Accuracy@3
|
239 |
+
- type: cosine_accuracy@5
|
240 |
+
value: 0.9993834771886559
|
241 |
+
name: Cosine Accuracy@5
|
242 |
+
- type: cosine_accuracy@10
|
243 |
+
value: 0.9993834771886559
|
244 |
+
name: Cosine Accuracy@10
|
245 |
+
- type: cosine_precision@1
|
246 |
+
value: 0.9704069050554871
|
247 |
+
name: Cosine Precision@1
|
248 |
+
- type: cosine_precision@3
|
249 |
+
value: 0.33148376489930126
|
250 |
+
name: Cosine Precision@3
|
251 |
+
- type: cosine_precision@5
|
252 |
+
value: 0.19987669543773118
|
253 |
+
name: Cosine Precision@5
|
254 |
+
- type: cosine_precision@10
|
255 |
+
value: 0.09993834771886559
|
256 |
+
name: Cosine Precision@10
|
257 |
+
- type: cosine_recall@1
|
258 |
+
value: 0.9704069050554871
|
259 |
+
name: Cosine Recall@1
|
260 |
+
- type: cosine_recall@3
|
261 |
+
value: 0.9944512946979038
|
262 |
+
name: Cosine Recall@3
|
263 |
+
- type: cosine_recall@5
|
264 |
+
value: 0.9993834771886559
|
265 |
+
name: Cosine Recall@5
|
266 |
+
- type: cosine_recall@10
|
267 |
+
value: 0.9993834771886559
|
268 |
+
name: Cosine Recall@10
|
269 |
+
- type: cosine_ndcg@10
|
270 |
+
value: 0.9867057287670639
|
271 |
+
name: Cosine Ndcg@10
|
272 |
+
- type: cosine_mrr@10
|
273 |
+
value: 0.9823982737361283
|
274 |
+
name: Cosine Mrr@10
|
275 |
+
- type: cosine_map@100
|
276 |
+
value: 0.9823982737361281
|
277 |
+
name: Cosine Map@100
|
278 |
+
- task:
|
279 |
+
type: information-retrieval
|
280 |
+
name: Information Retrieval
|
281 |
+
dataset:
|
282 |
+
name: dim 32
|
283 |
+
type: dim_32
|
284 |
+
metrics:
|
285 |
+
- type: cosine_accuracy@1
|
286 |
+
value: 0.971023427866831
|
287 |
+
name: Cosine Accuracy@1
|
288 |
+
- type: cosine_accuracy@3
|
289 |
+
value: 0.9950678175092479
|
290 |
+
name: Cosine Accuracy@3
|
291 |
+
- type: cosine_accuracy@5
|
292 |
+
value: 0.9993834771886559
|
293 |
+
name: Cosine Accuracy@5
|
294 |
+
- type: cosine_accuracy@10
|
295 |
+
value: 0.9993834771886559
|
296 |
+
name: Cosine Accuracy@10
|
297 |
+
- type: cosine_precision@1
|
298 |
+
value: 0.971023427866831
|
299 |
+
name: Cosine Precision@1
|
300 |
+
- type: cosine_precision@3
|
301 |
+
value: 0.3316892725030826
|
302 |
+
name: Cosine Precision@3
|
303 |
+
- type: cosine_precision@5
|
304 |
+
value: 0.19987669543773118
|
305 |
+
name: Cosine Precision@5
|
306 |
+
- type: cosine_precision@10
|
307 |
+
value: 0.09993834771886559
|
308 |
+
name: Cosine Precision@10
|
309 |
+
- type: cosine_recall@1
|
310 |
+
value: 0.971023427866831
|
311 |
+
name: Cosine Recall@1
|
312 |
+
- type: cosine_recall@3
|
313 |
+
value: 0.9950678175092479
|
314 |
+
name: Cosine Recall@3
|
315 |
+
- type: cosine_recall@5
|
316 |
+
value: 0.9993834771886559
|
317 |
+
name: Cosine Recall@5
|
318 |
+
- type: cosine_recall@10
|
319 |
+
value: 0.9993834771886559
|
320 |
+
name: Cosine Recall@10
|
321 |
+
- type: cosine_ndcg@10
|
322 |
+
value: 0.9872988931953259
|
323 |
+
name: Cosine Ndcg@10
|
324 |
+
- type: cosine_mrr@10
|
325 |
+
value: 0.9831689272503082
|
326 |
+
name: Cosine Mrr@10
|
327 |
+
- type: cosine_map@100
|
328 |
+
value: 0.9831689272503081
|
329 |
+
name: Cosine Map@100
|
330 |
+
---
|
331 |
+
|
332 |
+
# SentenceTransformer
|
333 |
+
|
334 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
335 |
+
|
336 |
+
## Model Details
|
337 |
+
|
338 |
+
### Model Description
|
339 |
+
- **Model Type:** Sentence Transformer
|
340 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
341 |
+
- **Maximum Sequence Length:** 512 tokens
|
342 |
+
- **Output Dimensionality:** 384 tokens
|
343 |
+
- **Similarity Function:** Cosine Similarity
|
344 |
+
<!-- - **Training Dataset:** Unknown -->
|
345 |
+
<!-- - **Language:** Unknown -->
|
346 |
+
<!-- - **License:** Unknown -->
|
347 |
+
|
348 |
+
### Model Sources
|
349 |
+
|
350 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
351 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
352 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
353 |
+
|
354 |
+
### Full Model Architecture
|
355 |
+
|
356 |
+
```
|
357 |
+
SentenceTransformer(
|
358 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
359 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
360 |
+
(2): Normalize()
|
361 |
+
)
|
362 |
+
```
|
363 |
+
|
364 |
+
## Usage
|
365 |
+
|
366 |
+
### Direct Usage (Sentence Transformers)
|
367 |
+
|
368 |
+
First install the Sentence Transformers library:
|
369 |
+
|
370 |
+
```bash
|
371 |
+
pip install -U sentence-transformers
|
372 |
+
```
|
373 |
+
|
374 |
+
Then you can load this model and run inference.
|
375 |
+
```python
|
376 |
+
from sentence_transformers import SentenceTransformer
|
377 |
+
|
378 |
+
# Download from the 🤗 Hub
|
379 |
+
model = SentenceTransformer("Adi-0-0-Gupta/Embedding-v1")
|
380 |
+
# Run inference
|
381 |
+
sentences = [
|
382 |
+
'Recipes that can be made using red onion and paprika: Breakfast Potatoes with Sausage, Peri Peri Chicken Pasta, Scrambled Egg Curry, Chili Mac & Cheese, Tomato Chicken Curry',
|
383 |
+
'What are some ways to use red onion and paprika in recipes?',
|
384 |
+
'Are there dishes that closely resemble spiced potatoes & fenugreek (aloo methi)?',
|
385 |
+
]
|
386 |
+
embeddings = model.encode(sentences)
|
387 |
+
print(embeddings.shape)
|
388 |
+
# [3, 384]
|
389 |
+
|
390 |
+
# Get the similarity scores for the embeddings
|
391 |
+
similarities = model.similarity(embeddings, embeddings)
|
392 |
+
print(similarities.shape)
|
393 |
+
# [3, 3]
|
394 |
+
```
|
395 |
+
|
396 |
+
<!--
|
397 |
+
### Direct Usage (Transformers)
|
398 |
+
|
399 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
400 |
+
|
401 |
+
</details>
|
402 |
+
-->
|
403 |
+
|
404 |
+
<!--
|
405 |
+
### Downstream Usage (Sentence Transformers)
|
406 |
+
|
407 |
+
You can finetune this model on your own dataset.
|
408 |
+
|
409 |
+
<details><summary>Click to expand</summary>
|
410 |
+
|
411 |
+
</details>
|
412 |
+
-->
|
413 |
+
|
414 |
+
<!--
|
415 |
+
### Out-of-Scope Use
|
416 |
+
|
417 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
418 |
+
-->
|
419 |
+
|
420 |
+
## Evaluation
|
421 |
+
|
422 |
+
### Metrics
|
423 |
+
|
424 |
+
#### Information Retrieval
|
425 |
+
* Dataset: `dim_384`
|
426 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
427 |
+
|
428 |
+
| Metric | Value |
|
429 |
+
|:--------------------|:-----------|
|
430 |
+
| cosine_accuracy@1 | 0.9704 |
|
431 |
+
| cosine_accuracy@3 | 0.9926 |
|
432 |
+
| cosine_accuracy@5 | 0.9988 |
|
433 |
+
| cosine_accuracy@10 | 0.9994 |
|
434 |
+
| cosine_precision@1 | 0.9704 |
|
435 |
+
| cosine_precision@3 | 0.3309 |
|
436 |
+
| cosine_precision@5 | 0.1998 |
|
437 |
+
| cosine_precision@10 | 0.0999 |
|
438 |
+
| cosine_recall@1 | 0.9704 |
|
439 |
+
| cosine_recall@3 | 0.9926 |
|
440 |
+
| cosine_recall@5 | 0.9988 |
|
441 |
+
| cosine_recall@10 | 0.9994 |
|
442 |
+
| cosine_ndcg@10 | 0.9865 |
|
443 |
+
| cosine_mrr@10 | 0.9822 |
|
444 |
+
| **cosine_map@100** | **0.9822** |
|
445 |
+
|
446 |
+
#### Information Retrieval
|
447 |
+
* Dataset: `dim_256`
|
448 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
449 |
+
|
450 |
+
| Metric | Value |
|
451 |
+
|:--------------------|:-----------|
|
452 |
+
| cosine_accuracy@1 | 0.9729 |
|
453 |
+
| cosine_accuracy@3 | 0.9932 |
|
454 |
+
| cosine_accuracy@5 | 0.9988 |
|
455 |
+
| cosine_accuracy@10 | 0.9994 |
|
456 |
+
| cosine_precision@1 | 0.9729 |
|
457 |
+
| cosine_precision@3 | 0.3311 |
|
458 |
+
| cosine_precision@5 | 0.1998 |
|
459 |
+
| cosine_precision@10 | 0.0999 |
|
460 |
+
| cosine_recall@1 | 0.9729 |
|
461 |
+
| cosine_recall@3 | 0.9932 |
|
462 |
+
| cosine_recall@5 | 0.9988 |
|
463 |
+
| cosine_recall@10 | 0.9994 |
|
464 |
+
| cosine_ndcg@10 | 0.9876 |
|
465 |
+
| cosine_mrr@10 | 0.9836 |
|
466 |
+
| **cosine_map@100** | **0.9836** |
|
467 |
+
|
468 |
+
#### Information Retrieval
|
469 |
+
* Dataset: `dim_128`
|
470 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
471 |
+
|
472 |
+
| Metric | Value |
|
473 |
+
|:--------------------|:-----------|
|
474 |
+
| cosine_accuracy@1 | 0.9723 |
|
475 |
+
| cosine_accuracy@3 | 0.9945 |
|
476 |
+
| cosine_accuracy@5 | 0.9994 |
|
477 |
+
| cosine_accuracy@10 | 0.9994 |
|
478 |
+
| cosine_precision@1 | 0.9723 |
|
479 |
+
| cosine_precision@3 | 0.3315 |
|
480 |
+
| cosine_precision@5 | 0.1999 |
|
481 |
+
| cosine_precision@10 | 0.0999 |
|
482 |
+
| cosine_recall@1 | 0.9723 |
|
483 |
+
| cosine_recall@3 | 0.9945 |
|
484 |
+
| cosine_recall@5 | 0.9994 |
|
485 |
+
| cosine_recall@10 | 0.9994 |
|
486 |
+
| cosine_ndcg@10 | 0.9873 |
|
487 |
+
| cosine_mrr@10 | 0.9833 |
|
488 |
+
| **cosine_map@100** | **0.9833** |
|
489 |
+
|
490 |
+
#### Information Retrieval
|
491 |
+
* Dataset: `dim_64`
|
492 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
493 |
+
|
494 |
+
| Metric | Value |
|
495 |
+
|:--------------------|:-----------|
|
496 |
+
| cosine_accuracy@1 | 0.9704 |
|
497 |
+
| cosine_accuracy@3 | 0.9945 |
|
498 |
+
| cosine_accuracy@5 | 0.9994 |
|
499 |
+
| cosine_accuracy@10 | 0.9994 |
|
500 |
+
| cosine_precision@1 | 0.9704 |
|
501 |
+
| cosine_precision@3 | 0.3315 |
|
502 |
+
| cosine_precision@5 | 0.1999 |
|
503 |
+
| cosine_precision@10 | 0.0999 |
|
504 |
+
| cosine_recall@1 | 0.9704 |
|
505 |
+
| cosine_recall@3 | 0.9945 |
|
506 |
+
| cosine_recall@5 | 0.9994 |
|
507 |
+
| cosine_recall@10 | 0.9994 |
|
508 |
+
| cosine_ndcg@10 | 0.9867 |
|
509 |
+
| cosine_mrr@10 | 0.9824 |
|
510 |
+
| **cosine_map@100** | **0.9824** |
|
511 |
+
|
512 |
+
#### Information Retrieval
|
513 |
+
* Dataset: `dim_32`
|
514 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
515 |
+
|
516 |
+
| Metric | Value |
|
517 |
+
|:--------------------|:-----------|
|
518 |
+
| cosine_accuracy@1 | 0.971 |
|
519 |
+
| cosine_accuracy@3 | 0.9951 |
|
520 |
+
| cosine_accuracy@5 | 0.9994 |
|
521 |
+
| cosine_accuracy@10 | 0.9994 |
|
522 |
+
| cosine_precision@1 | 0.971 |
|
523 |
+
| cosine_precision@3 | 0.3317 |
|
524 |
+
| cosine_precision@5 | 0.1999 |
|
525 |
+
| cosine_precision@10 | 0.0999 |
|
526 |
+
| cosine_recall@1 | 0.971 |
|
527 |
+
| cosine_recall@3 | 0.9951 |
|
528 |
+
| cosine_recall@5 | 0.9994 |
|
529 |
+
| cosine_recall@10 | 0.9994 |
|
530 |
+
| cosine_ndcg@10 | 0.9873 |
|
531 |
+
| cosine_mrr@10 | 0.9832 |
|
532 |
+
| **cosine_map@100** | **0.9832** |
|
533 |
+
|
534 |
+
<!--
|
535 |
+
## Bias, Risks and Limitations
|
536 |
+
|
537 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
538 |
+
-->
|
539 |
+
|
540 |
+
<!--
|
541 |
+
### Recommendations
|
542 |
+
|
543 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
544 |
+
-->
|
545 |
+
|
546 |
+
## Training Details
|
547 |
+
|
548 |
+
### Training Dataset
|
549 |
+
|
550 |
+
#### Unnamed Dataset
|
551 |
+
|
552 |
+
|
553 |
+
* Size: 14,593 training samples
|
554 |
+
* Columns: <code>positive</code> and <code>anchor</code>
|
555 |
+
* Approximate statistics based on the first 1000 samples:
|
556 |
+
| | positive | anchor |
|
557 |
+
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
558 |
+
| type | string | string |
|
559 |
+
| details | <ul><li>min: 11 tokens</li><li>mean: 53.46 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.83 tokens</li><li>max: 32 tokens</li></ul> |
|
560 |
+
* Samples:
|
561 |
+
| positive | anchor |
|
562 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
563 |
+
| <code>Calories information of Hyderabadi Chicken Masala, based on different serving sizes: Serving 1 - 345 calories, Serving 2 - 580 calories, Serving 3 - 1220 calories, Serving 4 - 1450 calories</code> | <code>What’s the calorie content of Hyderabadi Chicken Masala?</code> |
|
564 |
+
| <code>Recipes that can be made using dried herb mix and onion powder: Chorizo Queso Soup, Cheesy Chicken & Broccoli</code> | <code>What are some food items made using dried herb mix and onion powder?</code> |
|
565 |
+
| <code>Recipes that can be made using roasted semolina/bombay rava and saffron: Rashmi's Kesari Bath, Pineapple Kesari Bath</code> | <code>What recipes have roasted semolina/bombay rava and saffron in them?</code> |
|
566 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
567 |
+
```json
|
568 |
+
{
|
569 |
+
"loss": "MultipleNegativesRankingLoss",
|
570 |
+
"matryoshka_dims": [
|
571 |
+
384,
|
572 |
+
256,
|
573 |
+
128,
|
574 |
+
64,
|
575 |
+
32
|
576 |
+
],
|
577 |
+
"matryoshka_weights": [
|
578 |
+
1,
|
579 |
+
1,
|
580 |
+
1,
|
581 |
+
1,
|
582 |
+
1
|
583 |
+
],
|
584 |
+
"n_dims_per_step": -1
|
585 |
+
}
|
586 |
+
```
|
587 |
+
|
588 |
+
### Training Hyperparameters
|
589 |
+
#### Non-Default Hyperparameters
|
590 |
+
|
591 |
+
- `eval_strategy`: epoch
|
592 |
+
- `per_device_train_batch_size`: 32
|
593 |
+
- `per_device_eval_batch_size`: 32
|
594 |
+
- `gradient_accumulation_steps`: 16
|
595 |
+
- `learning_rate`: 1e-05
|
596 |
+
- `num_train_epochs`: 20
|
597 |
+
- `lr_scheduler_type`: cosine
|
598 |
+
- `warmup_ratio`: 0.1
|
599 |
+
- `bf16`: True
|
600 |
+
- `tf32`: True
|
601 |
+
- `load_best_model_at_end`: True
|
602 |
+
- `optim`: adamw_torch_fused
|
603 |
+
- `batch_sampler`: no_duplicates
|
604 |
+
|
605 |
+
#### All Hyperparameters
|
606 |
+
<details><summary>Click to expand</summary>
|
607 |
+
|
608 |
+
- `overwrite_output_dir`: False
|
609 |
+
- `do_predict`: False
|
610 |
+
- `eval_strategy`: epoch
|
611 |
+
- `prediction_loss_only`: True
|
612 |
+
- `per_device_train_batch_size`: 32
|
613 |
+
- `per_device_eval_batch_size`: 32
|
614 |
+
- `per_gpu_train_batch_size`: None
|
615 |
+
- `per_gpu_eval_batch_size`: None
|
616 |
+
- `gradient_accumulation_steps`: 16
|
617 |
+
- `eval_accumulation_steps`: None
|
618 |
+
- `learning_rate`: 1e-05
|
619 |
+
- `weight_decay`: 0.0
|
620 |
+
- `adam_beta1`: 0.9
|
621 |
+
- `adam_beta2`: 0.999
|
622 |
+
- `adam_epsilon`: 1e-08
|
623 |
+
- `max_grad_norm`: 1.0
|
624 |
+
- `num_train_epochs`: 20
|
625 |
+
- `max_steps`: -1
|
626 |
+
- `lr_scheduler_type`: cosine
|
627 |
+
- `lr_scheduler_kwargs`: {}
|
628 |
+
- `warmup_ratio`: 0.1
|
629 |
+
- `warmup_steps`: 0
|
630 |
+
- `log_level`: passive
|
631 |
+
- `log_level_replica`: warning
|
632 |
+
- `log_on_each_node`: True
|
633 |
+
- `logging_nan_inf_filter`: True
|
634 |
+
- `save_safetensors`: True
|
635 |
+
- `save_on_each_node`: False
|
636 |
+
- `save_only_model`: False
|
637 |
+
- `restore_callback_states_from_checkpoint`: False
|
638 |
+
- `no_cuda`: False
|
639 |
+
- `use_cpu`: False
|
640 |
+
- `use_mps_device`: False
|
641 |
+
- `seed`: 42
|
642 |
+
- `data_seed`: None
|
643 |
+
- `jit_mode_eval`: False
|
644 |
+
- `use_ipex`: False
|
645 |
+
- `bf16`: True
|
646 |
+
- `fp16`: False
|
647 |
+
- `fp16_opt_level`: O1
|
648 |
+
- `half_precision_backend`: auto
|
649 |
+
- `bf16_full_eval`: False
|
650 |
+
- `fp16_full_eval`: False
|
651 |
+
- `tf32`: True
|
652 |
+
- `local_rank`: 0
|
653 |
+
- `ddp_backend`: None
|
654 |
+
- `tpu_num_cores`: None
|
655 |
+
- `tpu_metrics_debug`: False
|
656 |
+
- `debug`: []
|
657 |
+
- `dataloader_drop_last`: False
|
658 |
+
- `dataloader_num_workers`: 0
|
659 |
+
- `dataloader_prefetch_factor`: None
|
660 |
+
- `past_index`: -1
|
661 |
+
- `disable_tqdm`: False
|
662 |
+
- `remove_unused_columns`: True
|
663 |
+
- `label_names`: None
|
664 |
+
- `load_best_model_at_end`: True
|
665 |
+
- `ignore_data_skip`: False
|
666 |
+
- `fsdp`: []
|
667 |
+
- `fsdp_min_num_params`: 0
|
668 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
669 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
670 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
671 |
+
- `deepspeed`: None
|
672 |
+
- `label_smoothing_factor`: 0.0
|
673 |
+
- `optim`: adamw_torch_fused
|
674 |
+
- `optim_args`: None
|
675 |
+
- `adafactor`: False
|
676 |
+
- `group_by_length`: False
|
677 |
+
- `length_column_name`: length
|
678 |
+
- `ddp_find_unused_parameters`: None
|
679 |
+
- `ddp_bucket_cap_mb`: None
|
680 |
+
- `ddp_broadcast_buffers`: False
|
681 |
+
- `dataloader_pin_memory`: True
|
682 |
+
- `dataloader_persistent_workers`: False
|
683 |
+
- `skip_memory_metrics`: True
|
684 |
+
- `use_legacy_prediction_loop`: False
|
685 |
+
- `push_to_hub`: False
|
686 |
+
- `resume_from_checkpoint`: None
|
687 |
+
- `hub_model_id`: None
|
688 |
+
- `hub_strategy`: every_save
|
689 |
+
- `hub_private_repo`: False
|
690 |
+
- `hub_always_push`: False
|
691 |
+
- `gradient_checkpointing`: False
|
692 |
+
- `gradient_checkpointing_kwargs`: None
|
693 |
+
- `include_inputs_for_metrics`: False
|
694 |
+
- `eval_do_concat_batches`: True
|
695 |
+
- `fp16_backend`: auto
|
696 |
+
- `push_to_hub_model_id`: None
|
697 |
+
- `push_to_hub_organization`: None
|
698 |
+
- `mp_parameters`:
|
699 |
+
- `auto_find_batch_size`: False
|
700 |
+
- `full_determinism`: False
|
701 |
+
- `torchdynamo`: None
|
702 |
+
- `ray_scope`: last
|
703 |
+
- `ddp_timeout`: 1800
|
704 |
+
- `torch_compile`: False
|
705 |
+
- `torch_compile_backend`: None
|
706 |
+
- `torch_compile_mode`: None
|
707 |
+
- `dispatch_batches`: None
|
708 |
+
- `split_batches`: None
|
709 |
+
- `include_tokens_per_second`: False
|
710 |
+
- `include_num_input_tokens_seen`: False
|
711 |
+
- `neftune_noise_alpha`: None
|
712 |
+
- `optim_target_modules`: None
|
713 |
+
- `batch_eval_metrics`: False
|
714 |
+
- `batch_sampler`: no_duplicates
|
715 |
+
- `multi_dataset_batch_sampler`: proportional
|
716 |
+
|
717 |
+
</details>
|
718 |
+
|
719 |
+
### Training Logs
|
720 |
+
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_32_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
|
721 |
+
|:-------:|:----:|:-------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|:---------------------:|
|
722 |
+
| 0.3501 | 10 | 0.0066 | - | - | - | - | - |
|
723 |
+
| 0.7002 | 20 | 0.0056 | - | - | - | - | - |
|
724 |
+
| 0.9803 | 28 | - | 0.9746 | 0.9771 | 0.9776 | 0.9758 | 0.9763 |
|
725 |
+
| 1.0503 | 30 | 0.0057 | - | - | - | - | - |
|
726 |
+
| 1.4004 | 40 | 0.0048 | - | - | - | - | - |
|
727 |
+
| 1.7505 | 50 | 0.0039 | - | - | - | - | - |
|
728 |
+
| 1.9956 | 57 | - | 0.9783 | 0.9787 | 0.9815 | 0.9788 | 0.9793 |
|
729 |
+
| 2.1007 | 60 | 0.0046 | - | - | - | - | - |
|
730 |
+
| 2.4508 | 70 | 0.0035 | - | - | - | - | - |
|
731 |
+
| 2.8009 | 80 | 0.0028 | - | - | - | - | - |
|
732 |
+
| 2.9759 | 85 | - | 0.9818 | 0.9811 | 0.9836 | 0.9803 | 0.9823 |
|
733 |
+
| 3.1510 | 90 | 0.0036 | - | - | - | - | - |
|
734 |
+
| 3.5011 | 100 | 0.0033 | - | - | - | - | - |
|
735 |
+
| 3.8512 | 110 | 0.0026 | - | - | - | - | - |
|
736 |
+
| 3.9912 | 114 | - | 0.9814 | 0.9818 | 0.9844 | 0.9814 | 0.9821 |
|
737 |
+
| 4.2013 | 120 | 0.0025 | - | - | - | - | - |
|
738 |
+
| 4.5514 | 130 | 0.003 | - | - | - | - | - |
|
739 |
+
| 4.9015 | 140 | 0.0027 | - | - | - | - | - |
|
740 |
+
| 4.9716 | 142 | - | 0.9825 | 0.9819 | 0.9844 | 0.9823 | 0.9825 |
|
741 |
+
| 5.2516 | 150 | 0.0024 | - | - | - | - | - |
|
742 |
+
| 5.6018 | 160 | 0.0023 | - | - | - | - | - |
|
743 |
+
| 5.9519 | 170 | 0.0024 | - | - | - | - | - |
|
744 |
+
| 5.9869 | 171 | - | 0.9831 | 0.9826 | 0.9846 | 0.9818 | 0.9831 |
|
745 |
+
| 6.3020 | 180 | 0.0025 | - | - | - | - | - |
|
746 |
+
| 6.6521 | 190 | 0.0025 | - | - | - | - | - |
|
747 |
+
| 6.9672 | 199 | - | 0.9830 | 0.9825 | 0.9844 | 0.9823 | 0.9831 |
|
748 |
+
| 7.0022 | 200 | 0.0019 | - | - | - | - | - |
|
749 |
+
| 7.3523 | 210 | 0.0022 | - | - | - | - | - |
|
750 |
+
| 7.7024 | 220 | 0.0026 | - | - | - | - | - |
|
751 |
+
| 7.9825 | 228 | - | 0.9828 | 0.9825 | 0.9836 | 0.9821 | 0.9821 |
|
752 |
+
| 8.0525 | 230 | 0.0022 | - | - | - | - | - |
|
753 |
+
| 8.4026 | 240 | 0.0021 | - | - | - | - | - |
|
754 |
+
| 8.7527 | 250 | 0.0021 | - | - | - | - | - |
|
755 |
+
| 8.9978 | 257 | - | 0.9827 | 0.9826 | 0.9848 | 0.9827 | 0.9827 |
|
756 |
+
| 9.1028 | 260 | 0.0025 | - | - | - | - | - |
|
757 |
+
| 9.4530 | 270 | 0.0022 | - | - | - | - | - |
|
758 |
+
| 9.8031 | 280 | 0.0019 | - | - | - | - | - |
|
759 |
+
| 9.9781 | 285 | - | 0.9832 | 0.9833 | 0.9858 | 0.9825 | 0.9834 |
|
760 |
+
| 10.1532 | 290 | 0.0021 | - | - | - | - | - |
|
761 |
+
| 10.5033 | 300 | 0.0019 | - | - | - | - | - |
|
762 |
+
| 10.8534 | 310 | 0.0024 | - | - | - | - | - |
|
763 |
+
| 10.9934 | 314 | - | 0.9830 | 0.9827 | 0.9850 | 0.9825 | 0.9829 |
|
764 |
+
| 11.2035 | 320 | 0.0017 | - | - | - | - | - |
|
765 |
+
| 11.5536 | 330 | 0.0017 | - | - | - | - | - |
|
766 |
+
| 11.9037 | 340 | 0.0018 | - | - | - | - | - |
|
767 |
+
| 11.9737 | 342 | - | 0.9827 | 0.9835 | 0.9841 | 0.9826 | 0.9827 |
|
768 |
+
| 12.2538 | 350 | 0.0018 | - | - | - | - | - |
|
769 |
+
| 12.6039 | 360 | 0.0018 | - | - | - | - | - |
|
770 |
+
| 12.9540 | 370 | 0.0023 | - | - | - | - | - |
|
771 |
+
| 12.9891 | 371 | - | 0.9828 | 0.9834 | 0.9832 | 0.9826 | 0.9823 |
|
772 |
+
| 13.3042 | 380 | 0.0017 | - | - | - | - | - |
|
773 |
+
| 13.6543 | 390 | 0.0018 | - | - | - | - | - |
|
774 |
+
| 13.9694 | 399 | - | 0.9830 | 0.9831 | 0.9838 | 0.9820 | 0.9826 |
|
775 |
+
| 14.0044 | 400 | 0.0016 | - | - | - | - | - |
|
776 |
+
| 14.3545 | 410 | 0.0018 | - | - | - | - | - |
|
777 |
+
| 14.7046 | 420 | 0.0018 | - | - | - | - | - |
|
778 |
+
| 14.9847 | 428 | - | 0.9827 | 0.9825 | 0.9832 | 0.9816 | 0.9826 |
|
779 |
+
| 15.0547 | 430 | 0.0018 | - | - | - | - | - |
|
780 |
+
| 15.4048 | 440 | 0.0015 | - | - | - | - | - |
|
781 |
+
| 15.7549 | 450 | 0.0017 | - | - | - | - | - |
|
782 |
+
| 16.0 | 457 | - | 0.9833 | 0.9836 | 0.9832 | 0.9822 | 0.9824 |
|
783 |
+
|
784 |
+
|
785 |
+
### Framework Versions
|
786 |
+
- Python: 3.10.12
|
787 |
+
- Sentence Transformers: 3.0.1
|
788 |
+
- Transformers: 4.41.2
|
789 |
+
- PyTorch: 2.1.2+cu121
|
790 |
+
- Accelerate: 0.31.0
|
791 |
+
- Datasets: 2.19.1
|
792 |
+
- Tokenizers: 0.19.1
|
793 |
+
|
794 |
+
## Citation
|
795 |
+
|
796 |
+
### BibTeX
|
797 |
+
|
798 |
+
#### Sentence Transformers
|
799 |
+
```bibtex
|
800 |
+
@inproceedings{reimers-2019-sentence-bert,
|
801 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
802 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
803 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
804 |
+
month = "11",
|
805 |
+
year = "2019",
|
806 |
+
publisher = "Association for Computational Linguistics",
|
807 |
+
url = "https://arxiv.org/abs/1908.10084",
|
808 |
+
}
|
809 |
+
```
|
810 |
+
|
811 |
+
#### MatryoshkaLoss
|
812 |
+
```bibtex
|
813 |
+
@misc{kusupati2024matryoshka,
|
814 |
+
title={Matryoshka Representation Learning},
|
815 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
816 |
+
year={2024},
|
817 |
+
eprint={2205.13147},
|
818 |
+
archivePrefix={arXiv},
|
819 |
+
primaryClass={cs.LG}
|
820 |
+
}
|
821 |
+
```
|
822 |
+
|
823 |
+
#### MultipleNegativesRankingLoss
|
824 |
+
```bibtex
|
825 |
+
@misc{henderson2017efficient,
|
826 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
827 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
828 |
+
year={2017},
|
829 |
+
eprint={1705.00652},
|
830 |
+
archivePrefix={arXiv},
|
831 |
+
primaryClass={cs.CL}
|
832 |
+
}
|
833 |
+
```
|
834 |
+
|
835 |
+
<!--
|
836 |
+
## Glossary
|
837 |
+
|
838 |
+
*Clearly define terms in order to be accessible across audiences.*
|
839 |
+
-->
|
840 |
+
|
841 |
+
<!--
|
842 |
+
## Model Card Authors
|
843 |
+
|
844 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
845 |
+
-->
|
846 |
+
|
847 |
+
<!--
|
848 |
+
## Model Card Contact
|
849 |
+
|
850 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
851 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../Output/Finetuned/checkpoint-457/",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.41.2",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.1.2+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc55e025fd21dbda8e1dc0872cf532ab0b0a5cc8677cac20ac605d3efd996d96
|
3 |
+
size 133462128
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|