File size: 1,673 Bytes
eb4d8c5
fbf85c2
 
 
 
 
 
 
 
eb4d8c5
 
fbf85c2
 
eb4d8c5
fbf85c2
eb4d8c5
fbf85c2
 
 
eb4d8c5
fbf85c2
eb4d8c5
fbf85c2
eb4d8c5
fbf85c2
eb4d8c5
fbf85c2
eb4d8c5
fbf85c2
eb4d8c5
fbf85c2
eb4d8c5
fbf85c2
eb4d8c5
fbf85c2
eb4d8c5
fbf85c2
 
 
 
 
 
 
 
 
 
 
eb4d8c5
fbf85c2
eb4d8c5
fbf85c2
 
 
 
 
 
 
 
eb4d8c5
 
fbf85c2
eb4d8c5
fbf85c2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: gemma
library_name: peft
tags:
- generated_from_trainer
base_model: google/gemma-2b
model-index:
- name: CodeGemma2b-300APPS
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CodeGemma2b-300APPS

This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9701

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 300

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0902        | 0.1667 | 50   | 1.0826          |
| 0.9774        | 0.3333 | 100  | 1.0107          |
| 0.9138        | 0.5    | 150  | 0.9829          |
| 0.8657        | 0.6667 | 200  | 0.9703          |
| 0.8228        | 0.8333 | 250  | 0.9685          |
| 0.8886        | 1.0    | 300  | 0.9701          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1