File size: 1,621 Bytes
fccb184
bce5b70
 
 
 
 
 
 
 
fccb184
 
bce5b70
 
fccb184
bce5b70
fccb184
bce5b70
 
 
fccb184
bce5b70
fccb184
bce5b70
fccb184
bce5b70
fccb184
bce5b70
fccb184
bce5b70
fccb184
bce5b70
fccb184
bce5b70
fccb184
bce5b70
fccb184
bce5b70
 
 
 
 
 
 
 
 
 
 
fccb184
bce5b70
fccb184
bce5b70
 
 
 
 
 
fccb184
 
bce5b70
fccb184
bce5b70
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/Phi-3.5-mini-instruct
model-index:
- name: CodePhi-3.5-mini-0.4Klora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CodePhi-3.5-mini-0.4Klora

This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6789

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- training_steps: 400

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.603         | 0.25  | 100  | 0.7058          |
| 0.6586        | 0.5   | 200  | 0.6842          |
| 0.6558        | 0.75  | 300  | 0.6790          |
| 0.6028        | 1.0   | 400  | 0.6789          |


### Framework versions

- PEFT 0.11.0
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1