AdonaiHS commited on
Commit
10f6c30
·
1 Parent(s): a770cb4

End of training

Browse files
Files changed (1) hide show
  1. README.md +26 -16
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.84
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.6404
36
- - Accuracy: 0.84
37
 
38
  ## Model description
39
 
@@ -59,22 +59,32 @@ The following hyperparameters were used during training:
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
- - training_steps: 1000
63
 
64
  ### Training results
65
 
66
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
- | 2.0825 | 0.88 | 100 | 1.8392 | 0.47 |
69
- | 1.4043 | 1.77 | 200 | 1.2675 | 0.67 |
70
- | 1.0686 | 2.65 | 300 | 1.0186 | 0.71 |
71
- | 0.8037 | 3.54 | 400 | 0.9198 | 0.74 |
72
- | 0.6215 | 4.42 | 500 | 0.7636 | 0.78 |
73
- | 0.5106 | 5.31 | 600 | 0.7937 | 0.76 |
74
- | 0.3844 | 6.19 | 700 | 0.6909 | 0.78 |
75
- | 0.3043 | 7.08 | 800 | 0.7279 | 0.77 |
76
- | 0.2453 | 7.96 | 900 | 0.6447 | 0.82 |
77
- | 0.211 | 8.85 | 1000 | 0.6404 | 0.84 |
 
 
 
 
 
 
 
 
 
 
78
 
79
 
80
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.86
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.8005
36
+ - Accuracy: 0.86
37
 
38
  ## Model description
39
 
 
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
+ - training_steps: 2000
63
 
64
  ### Training results
65
 
66
+ | Training Loss | Epoch | Step | Accuracy | Validation Loss |
67
+ |:-------------:|:-----:|:----:|:--------:|:---------------:|
68
+ | 2.0825 | 0.88 | 100 | 0.47 | 1.8392 |
69
+ | 1.4043 | 1.77 | 200 | 0.67 | 1.2675 |
70
+ | 1.0686 | 2.65 | 300 | 0.71 | 1.0186 |
71
+ | 0.8037 | 3.54 | 400 | 0.74 | 0.9198 |
72
+ | 0.6215 | 4.42 | 500 | 0.78 | 0.7636 |
73
+ | 0.5106 | 5.31 | 600 | 0.76 | 0.7937 |
74
+ | 0.3844 | 6.19 | 700 | 0.78 | 0.6909 |
75
+ | 0.3043 | 7.08 | 800 | 0.77 | 0.7279 |
76
+ | 0.2453 | 7.96 | 900 | 0.82 | 0.6447 |
77
+ | 0.211 | 8.85 | 1000 | 0.84 | 0.6404 |
78
+ | 0.2268 | 9.73 | 1100 | 0.7198 | 0.77 |
79
+ | 0.1565 | 10.62 | 1200 | 0.6704 | 0.83 |
80
+ | 0.0694 | 11.5 | 1300 | 0.8017 | 0.83 |
81
+ | 0.0568 | 12.39 | 1400 | 0.7841 | 0.8 |
82
+ | 0.0441 | 13.27 | 1500 | 0.7757 | 0.81 |
83
+ | 0.0302 | 14.16 | 1600 | 0.7819 | 0.84 |
84
+ | 0.0116 | 15.04 | 1700 | 0.7949 | 0.83 |
85
+ | 0.0289 | 15.93 | 1800 | 0.8057 | 0.85 |
86
+ | 0.0115 | 16.81 | 1900 | 0.8271 | 0.83 |
87
+ | 0.0081 | 17.7 | 2000 | 0.8005 | 0.86 |
88
 
89
 
90
  ### Framework versions