End of training
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -59,22 +59,32 @@ The following hyperparameters were used during training:
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
-
- training_steps:
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
67 |
-
|
68 |
-
| 2.0825 | 0.88 | 100 | 1.8392 |
|
69 |
-
| 1.4043 | 1.77 | 200 | 1.2675 |
|
70 |
-
| 1.0686 | 2.65 | 300 | 1.0186 |
|
71 |
-
| 0.8037 | 3.54 | 400 | 0.
|
72 |
-
| 0.6215 | 4.42 | 500 | 0.
|
73 |
-
| 0.5106 | 5.31 | 600 | 0.
|
74 |
-
| 0.3844 | 6.19 | 700 | 0.
|
75 |
-
| 0.3043 | 7.08 | 800 | 0.
|
76 |
-
| 0.2453 | 7.96 | 900 | 0.
|
77 |
-
| 0.211 | 8.85 | 1000 | 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
|
80 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.86
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.8005
|
36 |
+
- Accuracy: 0.86
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- training_steps: 2000
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
+
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|
67 |
+
|:-------------:|:-----:|:----:|:--------:|:---------------:|
|
68 |
+
| 2.0825 | 0.88 | 100 | 0.47 | 1.8392 |
|
69 |
+
| 1.4043 | 1.77 | 200 | 0.67 | 1.2675 |
|
70 |
+
| 1.0686 | 2.65 | 300 | 0.71 | 1.0186 |
|
71 |
+
| 0.8037 | 3.54 | 400 | 0.74 | 0.9198 |
|
72 |
+
| 0.6215 | 4.42 | 500 | 0.78 | 0.7636 |
|
73 |
+
| 0.5106 | 5.31 | 600 | 0.76 | 0.7937 |
|
74 |
+
| 0.3844 | 6.19 | 700 | 0.78 | 0.6909 |
|
75 |
+
| 0.3043 | 7.08 | 800 | 0.77 | 0.7279 |
|
76 |
+
| 0.2453 | 7.96 | 900 | 0.82 | 0.6447 |
|
77 |
+
| 0.211 | 8.85 | 1000 | 0.84 | 0.6404 |
|
78 |
+
| 0.2268 | 9.73 | 1100 | 0.7198 | 0.77 |
|
79 |
+
| 0.1565 | 10.62 | 1200 | 0.6704 | 0.83 |
|
80 |
+
| 0.0694 | 11.5 | 1300 | 0.8017 | 0.83 |
|
81 |
+
| 0.0568 | 12.39 | 1400 | 0.7841 | 0.8 |
|
82 |
+
| 0.0441 | 13.27 | 1500 | 0.7757 | 0.81 |
|
83 |
+
| 0.0302 | 14.16 | 1600 | 0.7819 | 0.84 |
|
84 |
+
| 0.0116 | 15.04 | 1700 | 0.7949 | 0.83 |
|
85 |
+
| 0.0289 | 15.93 | 1800 | 0.8057 | 0.85 |
|
86 |
+
| 0.0115 | 16.81 | 1900 | 0.8271 | 0.83 |
|
87 |
+
| 0.0081 | 17.7 | 2000 | 0.8005 | 0.86 |
|
88 |
|
89 |
|
90 |
### Framework versions
|