End of training
Browse files- README.md +52 -9
- pytorch_model.bin +1 -1
- training_args.bin +1 -1
README.md
CHANGED
@@ -5,9 +5,24 @@ tags:
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- marsyas/gtzan
|
|
|
|
|
8 |
model-index:
|
9 |
- name: distilhubert-finetuned-gtzan
|
10 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -17,13 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
-
|
21 |
-
-
|
22 |
-
- eval_loss: 1.0282
|
23 |
-
- eval_runtime: 45.3044
|
24 |
-
- eval_samples_per_second: 2.207
|
25 |
-
- eval_steps_per_second: 0.287
|
26 |
-
- step: 2500
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -42,7 +52,7 @@ More information needed
|
|
42 |
### Training hyperparameters
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
-
- learning_rate:
|
46 |
- train_batch_size: 8
|
47 |
- eval_batch_size: 8
|
48 |
- seed: 42
|
@@ -51,6 +61,39 @@ The following hyperparameters were used during training:
|
|
51 |
- lr_scheduler_warmup_ratio: 0.1
|
52 |
- training_steps: 3000
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
### Framework versions
|
55 |
|
56 |
- Transformers 4.32.0
|
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- marsyas/gtzan
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
model-index:
|
11 |
- name: distilhubert-finetuned-gtzan
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Audio Classification
|
15 |
+
type: audio-classification
|
16 |
+
dataset:
|
17 |
+
name: GTZAN
|
18 |
+
type: marsyas/gtzan
|
19 |
+
config: all
|
20 |
+
split: train
|
21 |
+
args: all
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.84
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.9085
|
36 |
+
- Accuracy: 0.84
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
- train_batch_size: 8
|
57 |
- eval_batch_size: 8
|
58 |
- seed: 42
|
|
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
- training_steps: 3000
|
63 |
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|
67 |
+
|:-------------:|:-----:|:----:|:--------:|:---------------:|
|
68 |
+
| 2.0825 | 0.88 | 100 | 0.47 | 1.8392 |
|
69 |
+
| 1.4043 | 1.77 | 200 | 0.67 | 1.2675 |
|
70 |
+
| 1.0686 | 2.65 | 300 | 0.71 | 1.0186 |
|
71 |
+
| 0.8037 | 3.54 | 400 | 0.74 | 0.9198 |
|
72 |
+
| 0.6215 | 4.42 | 500 | 0.78 | 0.7636 |
|
73 |
+
| 0.5106 | 5.31 | 600 | 0.76 | 0.7937 |
|
74 |
+
| 0.3844 | 6.19 | 700 | 0.78 | 0.6909 |
|
75 |
+
| 0.3043 | 7.08 | 800 | 0.77 | 0.7279 |
|
76 |
+
| 0.2453 | 7.96 | 900 | 0.82 | 0.6447 |
|
77 |
+
| 0.211 | 8.85 | 1000 | 0.84 | 0.6404 |
|
78 |
+
| 0.2268 | 9.73 | 1100 | 0.77 | 0.7198 |
|
79 |
+
| 0.1565 | 10.62 | 1200 | 0.83 | 0.6704 |
|
80 |
+
| 0.0694 | 11.5 | 1300 | 0.83 | 0.8017 |
|
81 |
+
| 0.0568 | 12.39 | 1400 | 0.8 | 0.7841 |
|
82 |
+
| 0.0441 | 13.27 | 1500 | 0.81 | 0.7757 |
|
83 |
+
| 0.0302 | 14.16 | 1600 | 0.84 | 0.7819 |
|
84 |
+
| 0.0116 | 15.04 | 1700 | 0.83 | 0.7949 |
|
85 |
+
| 0.0289 | 15.93 | 1800 | 0.85 | 0.8057 |
|
86 |
+
| 0.0115 | 16.81 | 1900 | 0.83 | 0.8271 |
|
87 |
+
| 0.0081 | 17.7 | 2000 | 0.86 | 0.8005 |
|
88 |
+
| 0.0124 | 18.58 | 2100 | 0.8 | 0.8927 |
|
89 |
+
| 0.0219 | 19.47 | 2200 | 0.85 | 0.8126 |
|
90 |
+
| 0.0161 | 20.35 | 2300 | 0.85 | 0.8464 |
|
91 |
+
| 0.0157 | 21.24 | 2400 | 0.86 | 0.8459 |
|
92 |
+
| 0.0039 | 22.12 | 2500 | 0.8 | 1.0282 |
|
93 |
+
| 0.0145 | 23.01 | 2600 | 0.9218 | 0.84 |
|
94 |
+
| 0.0149 | 23.89 | 2700 | 0.9085 | 0.84 |
|
95 |
+
|
96 |
+
|
97 |
### Framework versions
|
98 |
|
99 |
- Transformers 4.32.0
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94782534
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ffe6aa149d2250d28f5c513c2b303c1053ce95f219a9cee4d784b7d7d50e250
|
3 |
size 94782534
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4079
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ed031c8ab05ec89af418ab5a05069129a31a5e7b0ee9860f0b1a8f9b85810a1
|
3 |
size 4079
|