--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9971 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2793 | 0.88 | 100 | 2.1792 | 0.41 | | 1.992 | 1.77 | 200 | 1.6741 | 0.56 | | 1.4928 | 2.65 | 300 | 1.2795 | 0.56 | | 1.1156 | 3.54 | 400 | 0.9983 | 0.69 | | 0.9162 | 4.42 | 500 | 0.8222 | 0.73 | | 0.6785 | 5.31 | 600 | 0.8422 | 0.78 | | 0.4695 | 6.19 | 700 | 0.7034 | 0.8 | | 0.3362 | 7.08 | 800 | 0.9594 | 0.72 | | 0.2051 | 7.96 | 900 | 0.6157 | 0.84 | | 0.1242 | 8.85 | 1000 | 0.6059 | 0.86 | | 0.0678 | 9.73 | 1100 | 0.7626 | 0.86 | | 0.0479 | 10.62 | 1200 | 0.7886 | 0.84 | | 0.0216 | 11.5 | 1300 | 0.8302 | 0.85 | | 0.0202 | 12.39 | 1400 | 0.8921 | 0.86 | | 0.0155 | 13.27 | 1500 | 0.9971 | 0.85 | ### Framework versions - Transformers 4.32.0 - Pytorch 1.12.1+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3