Adrianosoprano
commited on
Commit
•
cd6bd62
1
Parent(s):
036dfd1
LunarLander-v2
Browse files- LunarLander-v2.zip +3 -0
- LunarLander-v2/_stable_baselines3_version +1 -0
- LunarLander-v2/data +99 -0
- LunarLander-v2/policy.optimizer.pth +3 -0
- LunarLander-v2/policy.pth +3 -0
- LunarLander-v2/pytorch_variables.pth +3 -0
- LunarLander-v2/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09cf40d02eb5e3b40ce7e5b0d4dd7bf63ca6055c43c879dcb42dc6a20883d167
|
3 |
+
size 146158
|
LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b693c1f1cf0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b693c1f1d80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b693c1f1e10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b693c1f1ea0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b693c1f1f30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b693c1f1fc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b693c1f2050>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b693c1f20e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b693c1f2170>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b693c1f2200>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b693c1f2290>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b693c1f2320>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b69454a1cc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1692523143158195975,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrgsL2ahSo+HBeEPhUZeL4+cAc+qsfQOwAAAAAAAAAAAEDTuTCfqT+qBsg7TycAv9t4HzrUhyK9AAAAAAAAAACaMNi9FLyBuvyoJLPBg+uw6bYxOQVPxTMAAIA/AACAP0CJu73F4Mc+5ksHPlX4rr5ANue6aoaCOwAAAAAAAAAAs0VNvh8llj+EJ6++ejECv/GQOb6ur469AAAAAAAAAAAme5Q+IjAiP/GzAb5wRPi+hl/5PYbHJL4AAAAAAAAAAOO6gT5hq/o+MMt6vtmNrb4hJIo9tkAFvgAAAAAAAAAAc4I5vg1UCD7Ndlk+ztNRvjnGATzzXTY9AAAAAAAAAABzkDm+MOy0PgjVTj4W8K2+3BUUvZAemD0AAAAAAAAAAM02LzycvY0/5Z/zPNfcH7/Sypc71sGwPAAAAAAAAAAAgDxJPeZnpj9OvrY+u9sJv2ImUj0eRhY+AAAAAAAAAABm44q81+56u/brM73x0II97aIHvCg267sAAIA/AACAPwBA0bqJ0bQ/E5wlvnv0nD0nX/M6Yg0WPQAAAAAAAAAA7W1vPtTlVT8moMk86dMLv1VEvT5AgnK+AAAAAAAAAAAzhOe9Bda/PJqhqj3EcB++nSQguyqAlT0AAAAAAAAAAJNWF75pew28xkRpvNqrtro1oWU93Y2YOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVAgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHOsm8mKIi2MAWyUS9CMAXSUR0CP//amoBJadX2UKGgGR0ByXGABkqc3aAdL6mgIR0CQACu5SWJKdX2UKGgGR0BwW2G9HtngaAdL9GgIR0CQAF9kjHGTdX2UKGgGR0BusAV0tAcDaAdL7mgIR0CQAH+NLlFMdX2UKGgGR0Bw2ivyLAHnaAdL/2gIR0CQAlIQe3hGdX2UKGgGR0Bwm5oZhrnDaAdNAwFoCEdAkALC7GvOhXV9lChoBkdAcy11qnFYMmgHS/1oCEdAkANxR64Ue3V9lChoBkdAce7bOu7pV2gHS+5oCEdAkAOqn3ta6nV9lChoBkdAcFB0mMOwxGgHTQEBaAhHQJADrYL9deJ1fZQoaAZHQHKi/DP4VRFoB0v/aAhHQJAD1YGMXJp1fZQoaAZHQHHr8TFl05loB00FAWgIR0CQBAh7mdRSdX2UKGgGR0BwczYQJ5VwaAdL2GgIR0CQBBu/k/8mdX2UKGgGR0ByMJY8uBczaAdNAQFoCEdAkARmoaUA1nV9lChoBkdAcbtc0tRNy2gHS91oCEdAkATwf2bobHV9lChoBkdAcM1Fl05lv2gHS95oCEdAkAVnrD63zHV9lChoBkdAbs40P6KtP2gHTQABaAhHQJAFkksz2vl1fZQoaAZHQHEU0v0yxiZoB0vcaAhHQJAHZ2KVII51fZQoaAZHQGNqxHXmNipoB03oA2gIR0CQB71EmY0EdX2UKGgGR0BuGfzYmLLqaAdL4mgIR0CQB/m7aqS6dX2UKGgGR0BwwvAaef7KaAdL4WgIR0CQCKsySFGodX2UKGgGR0BzS1Jd0JWvaAdL6mgIR0CQCRRG+bmVdX2UKGgGR0Bt2sS26TW5aAdL32gIR0CQCT68xsVMdX2UKGgGR0Bxrk2bXpW4aAdL8WgIR0CQCUIz3yqddX2UKGgGR0Bu/uoUBXCCaAdLyGgIR0CQCaFpwjt5dX2UKGgGR0By7EgaFVT8aAdL82gIR0CQCcREnb7CdX2UKGgGR0BxctREWqLkaAdLyWgIR0CQChrGipNsdX2UKGgGR0BlNiro4dZJaAdN6ANoCEdAkAo704BFNXV9lChoBkdAcjudjG1hLGgHS/poCEdAkApQJkXk53V9lChoBkdAcURoPkJa7mgHS89oCEdAkAp2jXWe6XV9lChoBkdAcvvhegL7XWgHTf8BaAhHQJAL/w5NoJ11fZQoaAZHQHHVvJiiItVoB0vXaAhHQJAMsrd30PJ1fZQoaAZHQHJID4DcM3JoB0v0aAhHQJANEYtQKrt1fZQoaAZHQHEoNQwblzVoB0voaAhHQJANW1qnFYN1fZQoaAZHQHFPLA+IM0BoB0vwaAhHQJAOR4Pf8/F1fZQoaAZHQHI5UpAlfJFoB0vZaAhHQJAO9LZi/fx1fZQoaAZHQHIImXTmW+poB0v4aAhHQJAPLfaYeDF1fZQoaAZHQHBk158jRlZoB0vvaAhHQJAPZQpF1CB1fZQoaAZHQG8lsfzSThZoB00CAWgIR0CQD3WZJCjUdX2UKGgGR0BuOoPEsJ6ZaAdL5mgIR0CQD9cDbJwLdX2UKGgGR0BwJOEXcgyNaAdL6WgIR0CQD/yWiUPhdX2UKGgGR0BwschllK9PaAdL7GgIR0CQECp4rz5HdX2UKGgGR0Bwz07GNrCWaAdL/GgIR0CQEDx4ptrLdX2UKGgGR0BiLFNBWxQjaAdN6ANoCEdAkBCjj3mFJ3V9lChoBkdAcJyN9ph4MWgHTQEBaAhHQJASBvo/zJ91fZQoaAZHQHD7pGe+VTtoB0veaAhHQJASXPQfIS11fZQoaAZHQG9Ea5Gz8gpoB0v6aAhHQJASqx7iQ1d1fZQoaAZHQG9ETiS7oStoB02jAmgIR0CQE8+5vtMPdX2UKGgGR0ByPD4fwI+oaAdNDgFoCEdAkBP6hL5AQnV9lChoBkdAcj8Rm9QGfWgHS+9oCEdAkBQfE4vN/3V9lChoBkdAcT0aIeo1k2gHS9loCEdAkBQvjn3cpXV9lChoBkdAcDfmFajesWgHS9toCEdAkBSbuUliSnV9lChoBkdAbT/JOFg2ImgHS+loCEdAkBTeglF+eHV9lChoBkdAcpBRdyDIzWgHS95oCEdAkBT5s0pEyHV9lChoBkdAcsV5DZ13dWgHTQ8BaAhHQJAVfEsJ6Y51fZQoaAZHQG82/xtpEhJoB00lAmgIR0CQFf2OAAhjdX2UKGgGR0ByyRdyDIzWaAdL/2gIR0CQFglAu7HydX2UKGgGR0BzW96ol2NeaAdL7WgIR0CQFg9RaX8gdX2UKGgGR0ByWycBltj1aAdNGgFoCEdAkBZao2n89HV9lChoBkdAcQ3kauOjqWgHTSsBaAhHQJAW1sXSBsh1fZQoaAZHQHA+kRradtloB0vzaAhHQJAXwbm2b5N1fZQoaAZHQG5hKtozvZ1oB0v3aAhHQJAYJ/NJOFh1fZQoaAZHQHBJOJ53TuxoB0veaAhHQJAYyHfuTid1fZQoaAZHQG0rMI3R5TtoB0v6aAhHQJAZkJtzjm11fZQoaAZHQHNOmsFMZgpoB00QAWgIR0CQGbdu5z5odX2UKGgGR0BzNSJXQtz0aAdNEwFoCEdAkBnv642CNHV9lChoBkdAcbZWVeKKpGgHS+toCEdAkBoSFGoaUHV9lChoBkdAc44IJqqOtGgHTQgBaAhHQJAaUsQNCqp1fZQoaAZHQG9EKHwgDA9oB011AWgIR0CQGnoXbdrPdX2UKGgGR0BtAavzOHFhaAdNEAFoCEdAkBq//rB0p3V9lChoBkdAbEwTwlSjxmgHS+poCEdAkBsEf1YhdXV9lChoBkdAbwTddE9dNWgHTQcBaAhHQJAbIzpHI6t1fZQoaAZHQHDN+PFNtZVoB00AAWgIR0CQG3elbeMydX2UKGgGR0BzLai35N48aAdNBgFoCEdAkBuQNLDhtXV9lChoBkdAbsvHggow22gHTRsBaAhHQJAcXxXnyNJ1fZQoaAZHQHESGJiy6c1oB00DAWgIR0CQHGTOgQHzdX2UKGgGR0Bwsq1twaR7aAdL9GgIR0CQHge/pMYedX2UKGgGR0BytXx2B8QaaAdL12gIR0CQHjoX9BKMdX2UKGgGR0BwQRBw++ueaAdL6mgIR0CQHou5z5oHdX2UKGgGR0BuPQkPczqKaAdL5mgIR0CQHtPNFBppdX2UKGgGR0BwxAjTrmheaAdL2WgIR0CQH58xKxs3dX2UKGgGR0BxR/0WdmQKaAdNAQFoCEdAkB/zXFtKqXV9lChoBkdAcHo76YVqOGgHTQABaAhHQJAgRvAGjbl1fZQoaAZHQHDY3OObRWtoB0v9aAhHQJAgbM6ij+J1fZQoaAZHQHGNjnvDxb1oB0vqaAhHQJAg5SydFv11fZQoaAZHQHLbJJ9RaX9oB0v9aAhHQJAhPMMZxaR1fZQoaAZHQHA/UBwMpgFoB0vyaAhHQJAhmy1NQCV1fZQoaAZHQHCOSVfNRm9oB0vnaAhHQJAib3L3bmF1fZQoaAZHQHLJjb8FY+1oB00RAWgIR0CQIpbrTpgUdX2UKGgGR0BwWNedCmdiaAdN7wFoCEdAkCQvo/zJ63V9lChoBkdAcsI5v99+gGgHS/FoCEdAkCVKDCgsb3V9lChoBkdAcNPnxaxHG2gHS+5oCEdAkCV3yEtdzHV9lChoBkdAcInK+BYms2gHS9hoCEdAkCWOqJdjXnV9lChoBkdAcY8Q+UyHmGgHS+9oCEdAkCXvzjFQ23V9lChoBkdAccWwyIpH7WgHTR4CaAhHQJAmQGC7K7t1fZQoaAZHQHGWx2GIsRRoB0vfaAhHQJAm5CE6DGt1fZQoaAZHQG9QcEFGG21oB0voaAhHQJAniXyAhB91fZQoaAZHQHL2ThYNiH9oB0vdaAhHQJAn4BtDUmV1fZQoaAZHQHAeIWcjJMhoB00GAWgIR0CQKNzXBguzdX2UKGgGR0BxHZwm3OObaAdNIQFoCEdAkCj8MI/qxHV9lChoBkdAc7Pd7OVxCWgHS+hoCEdAkClKJ/G2kXVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9efb5f650f2b3b9e47e0dbc239629870d1ad8e176fe218335774c140dc38ab2a
|
3 |
+
size 87545
|
LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3b2e1b60b6eb08cdbf611294e6bee9818828d0511077d6b3c35aa310a849259
|
3 |
+
size 43201
|
LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 272.72 +/- 19.41
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b693c1f1cf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b693c1f1d80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b693c1f1e10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b693c1f1ea0>", "_build": "<function ActorCriticPolicy._build at 0x7b693c1f1f30>", "forward": "<function ActorCriticPolicy.forward at 0x7b693c1f1fc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b693c1f2050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b693c1f20e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b693c1f2170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b693c1f2200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b693c1f2290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b693c1f2320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b69454a1cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692523143158195975, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrgsL2ahSo+HBeEPhUZeL4+cAc+qsfQOwAAAAAAAAAAAEDTuTCfqT+qBsg7TycAv9t4HzrUhyK9AAAAAAAAAACaMNi9FLyBuvyoJLPBg+uw6bYxOQVPxTMAAIA/AACAP0CJu73F4Mc+5ksHPlX4rr5ANue6aoaCOwAAAAAAAAAAs0VNvh8llj+EJ6++ejECv/GQOb6ur469AAAAAAAAAAAme5Q+IjAiP/GzAb5wRPi+hl/5PYbHJL4AAAAAAAAAAOO6gT5hq/o+MMt6vtmNrb4hJIo9tkAFvgAAAAAAAAAAc4I5vg1UCD7Ndlk+ztNRvjnGATzzXTY9AAAAAAAAAABzkDm+MOy0PgjVTj4W8K2+3BUUvZAemD0AAAAAAAAAAM02LzycvY0/5Z/zPNfcH7/Sypc71sGwPAAAAAAAAAAAgDxJPeZnpj9OvrY+u9sJv2ImUj0eRhY+AAAAAAAAAABm44q81+56u/brM73x0II97aIHvCg267sAAIA/AACAPwBA0bqJ0bQ/E5wlvnv0nD0nX/M6Yg0WPQAAAAAAAAAA7W1vPtTlVT8moMk86dMLv1VEvT5AgnK+AAAAAAAAAAAzhOe9Bda/PJqhqj3EcB++nSQguyqAlT0AAAAAAAAAAJNWF75pew28xkRpvNqrtro1oWU93Y2YOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHOsm8mKIi2MAWyUS9CMAXSUR0CP//amoBJadX2UKGgGR0ByXGABkqc3aAdL6mgIR0CQACu5SWJKdX2UKGgGR0BwW2G9HtngaAdL9GgIR0CQAF9kjHGTdX2UKGgGR0BusAV0tAcDaAdL7mgIR0CQAH+NLlFMdX2UKGgGR0Bw2ivyLAHnaAdL/2gIR0CQAlIQe3hGdX2UKGgGR0Bwm5oZhrnDaAdNAwFoCEdAkALC7GvOhXV9lChoBkdAcy11qnFYMmgHS/1oCEdAkANxR64Ue3V9lChoBkdAce7bOu7pV2gHS+5oCEdAkAOqn3ta6nV9lChoBkdAcFB0mMOwxGgHTQEBaAhHQJADrYL9deJ1fZQoaAZHQHKi/DP4VRFoB0v/aAhHQJAD1YGMXJp1fZQoaAZHQHHr8TFl05loB00FAWgIR0CQBAh7mdRSdX2UKGgGR0BwczYQJ5VwaAdL2GgIR0CQBBu/k/8mdX2UKGgGR0ByMJY8uBczaAdNAQFoCEdAkARmoaUA1nV9lChoBkdAcbtc0tRNy2gHS91oCEdAkATwf2bobHV9lChoBkdAcM1Fl05lv2gHS95oCEdAkAVnrD63zHV9lChoBkdAbs40P6KtP2gHTQABaAhHQJAFkksz2vl1fZQoaAZHQHEU0v0yxiZoB0vcaAhHQJAHZ2KVII51fZQoaAZHQGNqxHXmNipoB03oA2gIR0CQB71EmY0EdX2UKGgGR0BuGfzYmLLqaAdL4mgIR0CQB/m7aqS6dX2UKGgGR0BwwvAaef7KaAdL4WgIR0CQCKsySFGodX2UKGgGR0BzS1Jd0JWvaAdL6mgIR0CQCRRG+bmVdX2UKGgGR0Bt2sS26TW5aAdL32gIR0CQCT68xsVMdX2UKGgGR0Bxrk2bXpW4aAdL8WgIR0CQCUIz3yqddX2UKGgGR0Bu/uoUBXCCaAdLyGgIR0CQCaFpwjt5dX2UKGgGR0By7EgaFVT8aAdL82gIR0CQCcREnb7CdX2UKGgGR0BxctREWqLkaAdLyWgIR0CQChrGipNsdX2UKGgGR0BlNiro4dZJaAdN6ANoCEdAkAo704BFNXV9lChoBkdAcjudjG1hLGgHS/poCEdAkApQJkXk53V9lChoBkdAcURoPkJa7mgHS89oCEdAkAp2jXWe6XV9lChoBkdAcvvhegL7XWgHTf8BaAhHQJAL/w5NoJ11fZQoaAZHQHHVvJiiItVoB0vXaAhHQJAMsrd30PJ1fZQoaAZHQHJID4DcM3JoB0v0aAhHQJANEYtQKrt1fZQoaAZHQHEoNQwblzVoB0voaAhHQJANW1qnFYN1fZQoaAZHQHFPLA+IM0BoB0vwaAhHQJAOR4Pf8/F1fZQoaAZHQHI5UpAlfJFoB0vZaAhHQJAO9LZi/fx1fZQoaAZHQHIImXTmW+poB0v4aAhHQJAPLfaYeDF1fZQoaAZHQHBk158jRlZoB0vvaAhHQJAPZQpF1CB1fZQoaAZHQG8lsfzSThZoB00CAWgIR0CQD3WZJCjUdX2UKGgGR0BuOoPEsJ6ZaAdL5mgIR0CQD9cDbJwLdX2UKGgGR0BwJOEXcgyNaAdL6WgIR0CQD/yWiUPhdX2UKGgGR0BwschllK9PaAdL7GgIR0CQECp4rz5HdX2UKGgGR0Bwz07GNrCWaAdL/GgIR0CQEDx4ptrLdX2UKGgGR0BiLFNBWxQjaAdN6ANoCEdAkBCjj3mFJ3V9lChoBkdAcJyN9ph4MWgHTQEBaAhHQJASBvo/zJ91fZQoaAZHQHD7pGe+VTtoB0veaAhHQJASXPQfIS11fZQoaAZHQG9Ea5Gz8gpoB0v6aAhHQJASqx7iQ1d1fZQoaAZHQG9ETiS7oStoB02jAmgIR0CQE8+5vtMPdX2UKGgGR0ByPD4fwI+oaAdNDgFoCEdAkBP6hL5AQnV9lChoBkdAcj8Rm9QGfWgHS+9oCEdAkBQfE4vN/3V9lChoBkdAcT0aIeo1k2gHS9loCEdAkBQvjn3cpXV9lChoBkdAcDfmFajesWgHS9toCEdAkBSbuUliSnV9lChoBkdAbT/JOFg2ImgHS+loCEdAkBTeglF+eHV9lChoBkdAcpBRdyDIzWgHS95oCEdAkBT5s0pEyHV9lChoBkdAcsV5DZ13dWgHTQ8BaAhHQJAVfEsJ6Y51fZQoaAZHQG82/xtpEhJoB00lAmgIR0CQFf2OAAhjdX2UKGgGR0ByyRdyDIzWaAdL/2gIR0CQFglAu7HydX2UKGgGR0BzW96ol2NeaAdL7WgIR0CQFg9RaX8gdX2UKGgGR0ByWycBltj1aAdNGgFoCEdAkBZao2n89HV9lChoBkdAcQ3kauOjqWgHTSsBaAhHQJAW1sXSBsh1fZQoaAZHQHA+kRradtloB0vzaAhHQJAXwbm2b5N1fZQoaAZHQG5hKtozvZ1oB0v3aAhHQJAYJ/NJOFh1fZQoaAZHQHBJOJ53TuxoB0veaAhHQJAYyHfuTid1fZQoaAZHQG0rMI3R5TtoB0v6aAhHQJAZkJtzjm11fZQoaAZHQHNOmsFMZgpoB00QAWgIR0CQGbdu5z5odX2UKGgGR0BzNSJXQtz0aAdNEwFoCEdAkBnv642CNHV9lChoBkdAcbZWVeKKpGgHS+toCEdAkBoSFGoaUHV9lChoBkdAc44IJqqOtGgHTQgBaAhHQJAaUsQNCqp1fZQoaAZHQG9EKHwgDA9oB011AWgIR0CQGnoXbdrPdX2UKGgGR0BtAavzOHFhaAdNEAFoCEdAkBq//rB0p3V9lChoBkdAbEwTwlSjxmgHS+poCEdAkBsEf1YhdXV9lChoBkdAbwTddE9dNWgHTQcBaAhHQJAbIzpHI6t1fZQoaAZHQHDN+PFNtZVoB00AAWgIR0CQG3elbeMydX2UKGgGR0BzLai35N48aAdNBgFoCEdAkBuQNLDhtXV9lChoBkdAbsvHggow22gHTRsBaAhHQJAcXxXnyNJ1fZQoaAZHQHESGJiy6c1oB00DAWgIR0CQHGTOgQHzdX2UKGgGR0Bwsq1twaR7aAdL9GgIR0CQHge/pMYedX2UKGgGR0BytXx2B8QaaAdL12gIR0CQHjoX9BKMdX2UKGgGR0BwQRBw++ueaAdL6mgIR0CQHou5z5oHdX2UKGgGR0BuPQkPczqKaAdL5mgIR0CQHtPNFBppdX2UKGgGR0BwxAjTrmheaAdL2WgIR0CQH58xKxs3dX2UKGgGR0BxR/0WdmQKaAdNAQFoCEdAkB/zXFtKqXV9lChoBkdAcHo76YVqOGgHTQABaAhHQJAgRvAGjbl1fZQoaAZHQHDY3OObRWtoB0v9aAhHQJAgbM6ij+J1fZQoaAZHQHGNjnvDxb1oB0vqaAhHQJAg5SydFv11fZQoaAZHQHLbJJ9RaX9oB0v9aAhHQJAhPMMZxaR1fZQoaAZHQHA/UBwMpgFoB0vyaAhHQJAhmy1NQCV1fZQoaAZHQHCOSVfNRm9oB0vnaAhHQJAib3L3bmF1fZQoaAZHQHLJjb8FY+1oB00RAWgIR0CQIpbrTpgUdX2UKGgGR0BwWNedCmdiaAdN7wFoCEdAkCQvo/zJ63V9lChoBkdAcsI5v99+gGgHS/FoCEdAkCVKDCgsb3V9lChoBkdAcNPnxaxHG2gHS+5oCEdAkCV3yEtdzHV9lChoBkdAcInK+BYms2gHS9hoCEdAkCWOqJdjXnV9lChoBkdAcY8Q+UyHmGgHS+9oCEdAkCXvzjFQ23V9lChoBkdAccWwyIpH7WgHTR4CaAhHQJAmQGC7K7t1fZQoaAZHQHGWx2GIsRRoB0vfaAhHQJAm5CE6DGt1fZQoaAZHQG9QcEFGG21oB0voaAhHQJAniXyAhB91fZQoaAZHQHL2ThYNiH9oB0vdaAhHQJAn4BtDUmV1fZQoaAZHQHAeIWcjJMhoB00GAWgIR0CQKNzXBguzdX2UKGgGR0BxHZwm3OObaAdNIQFoCEdAkCj8MI/qxHV9lChoBkdAc7Pd7OVxCWgHS+hoCEdAkClKJ/G2kXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (144 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 272.72210100000007, "std_reward": 19.414751979272786, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-20T10:11:25.023833"}
|