Against61 commited on
Commit
bc4ae82
1 Parent(s): b2584c8

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -113.24 +/- 33.86
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff298a40440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff298a404d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff298a40560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff298a405f0>", "_build": "<function ActorCriticPolicy._build at 0x7ff298a40680>", "forward": "<function ActorCriticPolicy.forward at 0x7ff298a40710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff298a407a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff298a40830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff298a408c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff298a40950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff298a409e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff298a04c30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651843449.5587342, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC2MSz4kxX88OvACP3s5Ob9ul4i+noQgPwAAgD8AAAAAM+AZvSBftD/PhKq+VRj8vEuQVLz7L5q9AAAAAAAAAABz2sc+46Q6P+uiCz+vD0a/6tq7vNH3GT0AAAAAAAAAAGZq3TskTbs/1T6sPQk9xz2mAQK92srovQAAAAAAAAAAzaRSO25dsz+qtis+1JFovh6GrrvOy4+9AAAAAAAAAADWWle+95siPw/5jL6g/nK/ipsvvia+870AAAAAAAAAAAAx87xfebA/6ZI9v8Jxy751vt08cl7NPQAAAAAAAAAAPUJzvn+KDD6i1L2+vnOIv/Zxmz5cUAO9AAAAAAAAAADzQK8+QqyHPt4LJj5aTGi/UO5FPkJ6Wr0AAAAAAAAAAHYnwz6UYQQ+DqA6PoTXYr8AlpI+0+pOPgAAAAAAAAAA89LXPRJEaT8T50o++QhRv89fAD6q0Mw8AAAAAAAAAAAmjtI9m45tP2xAxD4Cbmy/BNhHvcZ6iz0AAAAAAAAAAEZ+LD6fjD4/3jl6PhYyR78QzNg7TLMmPAAAAAAAAAAAs6qAvjPjqj/RYCi/HKWkvuL6/j0dkGa8AAAAAAAAAACzlE09rJRNP/TdqT0amDm/lrr/vX36Gb0AAAAAAAAAAMYWVb4Lbmk/eSYiv20Ug7/P1Wo9a6jFvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEYqtoGnpQ8CUhpRSlIwBbJRLcowBdJRHQIy1KHsTnJV1fZQoaAZoCWgPQwiR1ELJZPtuwJSGlFKUaBVLfGgWR0CMtaeLehwmdX2UKGgGaAloD0MITMKFPILLI0CUhpRSlGgVS4poFkdAjLYfZM+NcXV9lChoBmgJaA9DCBtMw/ARw07AlIaUUpRoFUt0aBZHQIy2V/4Irvt1fZQoaAZoCWgPQwi4dTdPdYBVwJSGlFKUaBVLX2gWR0CMtnl2eQMhdX2UKGgGaAloD0MIdy0hH/TuWMCUhpRSlGgVS25oFkdAjLackMTewnV9lChoBmgJaA9DCMbf9gSJy07AlIaUUpRoFUtVaBZHQIy2q7Ciypt1fZQoaAZoCWgPQwjFceDVckJSwJSGlFKUaBVLbGgWR0CMt1cdHUc5dX2UKGgGaAloD0MIdqT6zi+IWsCUhpRSlGgVS1BoFkdAjLeqv3ai9XV9lChoBmgJaA9DCNnr3R/vVRjAlIaUUpRoFUuAaBZHQIy3+rELpiZ1fZQoaAZoCWgPQwiz7Elgc6RDwJSGlFKUaBVLZmgWR0CMuB8/lhgFdX2UKGgGaAloD0MIlIjwL4KuVMCUhpRSlGgVS2ZoFkdAjLjlXA/LT3V9lChoBmgJaA9DCA360tufe0/AlIaUUpRoFUtNaBZHQIy48Oby6MB1fZQoaAZoCWgPQwhEv7Z++jtSwJSGlFKUaBVLcWgWR0CMuT3xnWaudX2UKGgGaAloD0MIBB2takk0UcCUhpRSlGgVS0FoFkdAjLnvyLAHmnV9lChoBmgJaA9DCO7sKw/S31rAlIaUUpRoFUtjaBZHQIy6wGKQ7tB1fZQoaAZoCWgPQwigGFkyxxJOwJSGlFKUaBVLUGgWR0CMuyS5iExqdX2UKGgGaAloD0MIWg9fJoooScCUhpRSlGgVS3FoFkdAjLswkxASnXV9lChoBmgJaA9DCAGJJlDEKlfAlIaUUpRoFUtXaBZHQIy7bpqynk11fZQoaAZoCWgPQwgmHlA25S5YwJSGlFKUaBVLXGgWR0CMu+Vfu1F6dX2UKGgGaAloD0MID0JAvgQfbcCUhpRSlGgVS3BoFkdAjLwHfl6qsHV9lChoBmgJaA9DCIGSAgtg3kPAlIaUUpRoFUtaaBZHQIy82qebutx1fZQoaAZoCWgPQwg4u7VMhoVNwJSGlFKUaBVLYmgWR0CMvPgpBomHdX2UKGgGaAloD0MIzsEzoUmGOMCUhpRSlGgVS4BoFkdAjL1t+b3GoHV9lChoBmgJaA9DCMuEX+rn+1DAlIaUUpRoFUtdaBZHQIy9gy0rsjV1fZQoaAZoCWgPQwg+lGjJ4y9LwJSGlFKUaBVLXGgWR0CMvjmNipeedX2UKGgGaAloD0MIO44fKo29V8CUhpRSlGgVS3JoFkdAjL6QLVnVXnV9lChoBmgJaA9DCHO9baZChGrAlIaUUpRoFUtmaBZHQIy+25z5oGp1fZQoaAZoCWgPQwiWk1D6QhxFwJSGlFKUaBVLZGgWR0CMvw8f3evZdX2UKGgGaAloD0MIpfYi2o4pDsCUhpRSlGgVS0xoFkdAjL/UQ9RrJ3V9lChoBmgJaA9DCPhtiPGaMzrAlIaUUpRoFUtcaBZHQIzAHos7MgV1fZQoaAZoCWgPQwioGr0aoNZGwJSGlFKUaBVLdmgWR0CMwOHN5dGBdX2UKGgGaAloD0MINj6T/fNwXsCUhpRSlGgVS2hoFkdAjMFBMzuWr3V9lChoBmgJaA9DCLlxi/m5KlPAlIaUUpRoFUtqaBZHQIzCLsv7FbV1fZQoaAZoCWgPQwhAwjBgyfUxwJSGlFKUaBVLgWgWR0CMwuFdszl+dX2UKGgGaAloD0MILNMvEW+SVsCUhpRSlGgVS1loFkdAjMLejM3ZPHV9lChoBmgJaA9DCOD2BInt4E7AlIaUUpRoFUtwaBZHQIzCzc0tRN11fZQoaAZoCWgPQwg1Cd6QxhxhwJSGlFKUaBVLZWgWR0CMwx3HJcPfdX2UKGgGaAloD0MIgzP4+8XeQcCUhpRSlGgVS1NoFkdAjMNdsSCe3HV9lChoBmgJaA9DCIF5yJQP4ljAlIaUUpRoFUthaBZHQIzEiQ3gk1N1fZQoaAZoCWgPQwh9I7pnXQtFwJSGlFKUaBVLfWgWR0CMxR5wfhdddX2UKGgGaAloD0MIG70aoDQxUMCUhpRSlGgVS1RoFkdAjMUOPmxMWXV9lChoBmgJaA9DCIW1MXbCQUTAlIaUUpRoFUtqaBZHQIzFZZ0Syt51fZQoaAZoCWgPQwhbP/1nzclPwJSGlFKUaBVLWGgWR0CMxZRG+bmVdX2UKGgGaAloD0MIpS2u8Zl4ScCUhpRSlGgVS5JoFkdAjMW5PM0P6XV9lChoBmgJaA9DCOyEl+DU7lfAlIaUUpRoFUt6aBZHQIzGh5qubI91fZQoaAZoCWgPQwiMZ9DQPyNEwJSGlFKUaBVLWGgWR0CMxrCk43m3dX2UKGgGaAloD0MI9WT+0TdhTcCUhpRSlGgVS0VoFkdAjMbtj9XLeXV9lChoBmgJaA9DCDo+WpwxBk3AlIaUUpRoFUtOaBZHQIzHyh11W811fZQoaAZoCWgPQwjgopOl1o9CwJSGlFKUaBVLd2gWR0CMyDYSxqwhdX2UKGgGaAloD0MI76tyofKBVMCUhpRSlGgVS2poFkdAjMlRcE/0NHV9lChoBmgJaA9DCIYCtoMRUlHAlIaUUpRoFUtwaBZHQIzKPmPo3aV1fZQoaAZoCWgPQwjlQuVfywBVwJSGlFKUaBVLVWgWR0CMylJSzgMudX2UKGgGaAloD0MIrRiuDoDcOsCUhpRSlGgVS4xoFkdAjMr+OXE61nV9lChoBmgJaA9DCP1P/u4dJlHAlIaUUpRoFUtmaBZHQIzK+vjfek51fZQoaAZoCWgPQwhW0/VE11VXwJSGlFKUaBVLYWgWR0CMy0YNy5qedX2UKGgGaAloD0MID37iAPpVIcCUhpRSlGgVS1xoFkdAjMuZU1hsqXV9lChoBmgJaA9DCDKtTWN7VF7AlIaUUpRoFUuVaBZHQIzMQNqgyuZ1fZQoaAZoCWgPQwhqaAOwAQ1QwJSGlFKUaBVLWWgWR0CMzH/vOQhfdX2UKGgGaAloD0MIhssqbAa4PsCUhpRSlGgVS3JoFkdAjMyxTS9dvHV9lChoBmgJaA9DCIF38umxQ0nAlIaUUpRoFUtOaBZHQIzM9R+BpYd1fZQoaAZoCWgPQwjbNLbXgkZMwJSGlFKUaBVLbmgWR0CMzabG3nZCdX2UKGgGaAloD0MId9Zuu9BoV8CUhpRSlGgVS19oFkdAjM5y39aUzXV9lChoBmgJaA9DCB3pDIy8aFbAlIaUUpRoFUuPaBZHQIzOt2A5Jbt1fZQoaAZoCWgPQwjbF9ALd5dSwJSGlFKUaBVLfWgWR0CMzyxkd3jddX2UKGgGaAloD0MI5Pih0ohlUcCUhpRSlGgVS0toFkdAjM9SJj2Ba3V9lChoBmgJaA9DCNxifm5o7VfAlIaUUpRoFUtsaBZHQIzQjjxTbWV1fZQoaAZoCWgPQwhr1hnfFyVdwJSGlFKUaBVLXGgWR0CM0H3TNMXadX2UKGgGaAloD0MIzhsnhXlWVcCUhpRSlGgVS05oFkdAjNDMNDtw73V9lChoBmgJaA9DCOKTTiSYPFbAlIaUUpRoFUtjaBZHQIzR0sasIVx1fZQoaAZoCWgPQwjIQQkzbYpbwJSGlFKUaBVLa2gWR0CM0hYJ3PiUdX2UKGgGaAloD0MIqU4Hsp53V8CUhpRSlGgVS3doFkdAjNLm9YfW+XV9lChoBmgJaA9DCKRVLeko2FXAlIaUUpRoFUtqaBZHQIzTW/Yao/B1fZQoaAZoCWgPQwhf7pOjALkgwJSGlFKUaBVLS2gWR0CM06GUwBYFdX2UKGgGaAloD0MIrd7hdmgAR8CUhpRSlGgVS3VoFkdAjNRdE9dNWXV9lChoBmgJaA9DCKzJU1bTw1zAlIaUUpRoFUtpaBZHQIzUyDyvs7d1fZQoaAZoCWgPQwhGBrmLMIZZwJSGlFKUaBVLeWgWR0CM1NhfBvaUdX2UKGgGaAloD0MIWoP3VbmwTMCUhpRSlGgVS3poFkdAjNUuD8LronV9lChoBmgJaA9DCCyeeqTBNUbAlIaUUpRoFUthaBZHQIzVXo9s7+11fZQoaAZoCWgPQwgLCoMyjZZMwJSGlFKUaBVLTGgWR0CM1aSL61stdX2UKGgGaAloD0MIAYV6+giPWsCUhpRSlGgVS2hoFkdAjNZFmOEM9nV9lChoBmgJaA9DCDV8C+vGYFPAlIaUUpRoFUtxaBZHQIzWuJxeb/h1fZQoaAZoCWgPQwiSk4lbBf0+wJSGlFKUaBVLTWgWR0CM1wGKQ7tBdX2UKGgGaAloD0MIHa1qSUfKUMCUhpRSlGgVS29oFkdAjNhAcLjPwHV9lChoBmgJaA9DCLpL4qyIG1DAlIaUUpRoFUtzaBZHQIzYVMIu5Bl1fZQoaAZoCWgPQwjMmII1zgo5wJSGlFKUaBVLUmgWR0CM2HEpiI+GdX2UKGgGaAloD0MIPiE7b2OYWECUhpRSlGgVTegDaBZHQIzZnRLK3d91fZQoaAZoCWgPQwhHVRNE3R5awJSGlFKUaBVLcWgWR0CM2buMuOCHdX2UKGgGaAloD0MI+GwdHOx7TMCUhpRSlGgVS2BoFkdAjNnBPsRg7nV9lChoBmgJaA9DCPFlogipw1LAlIaUUpRoFUtfaBZHQIzavECNjsl1fZQoaAZoCWgPQwhLdQEvMw5JwJSGlFKUaBVLWmgWR0CM2uVJtix3dX2UKGgGaAloD0MIqkTZW8oQW8CUhpRSlGgVS2doFkdAjNs0WdmQKnV9lChoBmgJaA9DCDikUYGTETTAlIaUUpRoFUt0aBZHQIzbgZsKsuF1fZQoaAZoCWgPQwj7dDxmoGxJwJSGlFKUaBVLg2gWR0CM27MyrPt2dX2UKGgGaAloD0MIuvPEc7ZpV8CUhpRSlGgVS11oFkdAjNwjVx0dR3V9lChoBmgJaA9DCFU01v7OzkvAlIaUUpRoFUtyaBZHQIzcWtEG7jF1fZQoaAZoCWgPQwiPcFrwog9KwJSGlFKUaBVLb2gWR0CM3UbgCOm0dX2UKGgGaAloD0MI8WQ3M/qVSsCUhpRSlGgVS1xoFkdAjN1Gbb1yvXV9lChoBmgJaA9DCKXZPA6D4GPAlIaUUpRoFUuSaBZHQIzdmyxA0Kt1fZQoaAZoCWgPQwg1lxsMddJIwJSGlFKUaBVLZmgWR0CM3bUb1h9cdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42670b0a30a067ad2d69d9067e1ea860c45fd7ca25f30fe07137203289aa7eac
3
+ size 143913
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff298a40440>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff298a404d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff298a40560>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff298a405f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff298a40680>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff298a40710>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff298a407a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff298a40830>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff298a408c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff298a40950>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff298a409e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff298a04c30>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 114688,
46
+ "_total_timesteps": 100000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651843449.5587342,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC2MSz4kxX88OvACP3s5Ob9ul4i+noQgPwAAgD8AAAAAM+AZvSBftD/PhKq+VRj8vEuQVLz7L5q9AAAAAAAAAABz2sc+46Q6P+uiCz+vD0a/6tq7vNH3GT0AAAAAAAAAAGZq3TskTbs/1T6sPQk9xz2mAQK92srovQAAAAAAAAAAzaRSO25dsz+qtis+1JFovh6GrrvOy4+9AAAAAAAAAADWWle+95siPw/5jL6g/nK/ipsvvia+870AAAAAAAAAAAAx87xfebA/6ZI9v8Jxy751vt08cl7NPQAAAAAAAAAAPUJzvn+KDD6i1L2+vnOIv/Zxmz5cUAO9AAAAAAAAAADzQK8+QqyHPt4LJj5aTGi/UO5FPkJ6Wr0AAAAAAAAAAHYnwz6UYQQ+DqA6PoTXYr8AlpI+0+pOPgAAAAAAAAAA89LXPRJEaT8T50o++QhRv89fAD6q0Mw8AAAAAAAAAAAmjtI9m45tP2xAxD4Cbmy/BNhHvcZ6iz0AAAAAAAAAAEZ+LD6fjD4/3jl6PhYyR78QzNg7TLMmPAAAAAAAAAAAs6qAvjPjqj/RYCi/HKWkvuL6/j0dkGa8AAAAAAAAAACzlE09rJRNP/TdqT0amDm/lrr/vX36Gb0AAAAAAAAAAMYWVb4Lbmk/eSYiv20Ug7/P1Wo9a6jFvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.1468799999999999,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEYqtoGnpQ8CUhpRSlIwBbJRLcowBdJRHQIy1KHsTnJV1fZQoaAZoCWgPQwiR1ELJZPtuwJSGlFKUaBVLfGgWR0CMtaeLehwmdX2UKGgGaAloD0MITMKFPILLI0CUhpRSlGgVS4poFkdAjLYfZM+NcXV9lChoBmgJaA9DCBtMw/ARw07AlIaUUpRoFUt0aBZHQIy2V/4Irvt1fZQoaAZoCWgPQwi4dTdPdYBVwJSGlFKUaBVLX2gWR0CMtnl2eQMhdX2UKGgGaAloD0MIdy0hH/TuWMCUhpRSlGgVS25oFkdAjLackMTewnV9lChoBmgJaA9DCMbf9gSJy07AlIaUUpRoFUtVaBZHQIy2q7Ciypt1fZQoaAZoCWgPQwjFceDVckJSwJSGlFKUaBVLbGgWR0CMt1cdHUc5dX2UKGgGaAloD0MIdqT6zi+IWsCUhpRSlGgVS1BoFkdAjLeqv3ai9XV9lChoBmgJaA9DCNnr3R/vVRjAlIaUUpRoFUuAaBZHQIy3+rELpiZ1fZQoaAZoCWgPQwiz7Elgc6RDwJSGlFKUaBVLZmgWR0CMuB8/lhgFdX2UKGgGaAloD0MIlIjwL4KuVMCUhpRSlGgVS2ZoFkdAjLjlXA/LT3V9lChoBmgJaA9DCA360tufe0/AlIaUUpRoFUtNaBZHQIy48Oby6MB1fZQoaAZoCWgPQwhEv7Z++jtSwJSGlFKUaBVLcWgWR0CMuT3xnWaudX2UKGgGaAloD0MIBB2takk0UcCUhpRSlGgVS0FoFkdAjLnvyLAHmnV9lChoBmgJaA9DCO7sKw/S31rAlIaUUpRoFUtjaBZHQIy6wGKQ7tB1fZQoaAZoCWgPQwigGFkyxxJOwJSGlFKUaBVLUGgWR0CMuyS5iExqdX2UKGgGaAloD0MIWg9fJoooScCUhpRSlGgVS3FoFkdAjLswkxASnXV9lChoBmgJaA9DCAGJJlDEKlfAlIaUUpRoFUtXaBZHQIy7bpqynk11fZQoaAZoCWgPQwgmHlA25S5YwJSGlFKUaBVLXGgWR0CMu+Vfu1F6dX2UKGgGaAloD0MID0JAvgQfbcCUhpRSlGgVS3BoFkdAjLwHfl6qsHV9lChoBmgJaA9DCIGSAgtg3kPAlIaUUpRoFUtaaBZHQIy82qebutx1fZQoaAZoCWgPQwg4u7VMhoVNwJSGlFKUaBVLYmgWR0CMvPgpBomHdX2UKGgGaAloD0MIzsEzoUmGOMCUhpRSlGgVS4BoFkdAjL1t+b3GoHV9lChoBmgJaA9DCMuEX+rn+1DAlIaUUpRoFUtdaBZHQIy9gy0rsjV1fZQoaAZoCWgPQwg+lGjJ4y9LwJSGlFKUaBVLXGgWR0CMvjmNipeedX2UKGgGaAloD0MIO44fKo29V8CUhpRSlGgVS3JoFkdAjL6QLVnVXnV9lChoBmgJaA9DCHO9baZChGrAlIaUUpRoFUtmaBZHQIy+25z5oGp1fZQoaAZoCWgPQwiWk1D6QhxFwJSGlFKUaBVLZGgWR0CMvw8f3evZdX2UKGgGaAloD0MIpfYi2o4pDsCUhpRSlGgVS0xoFkdAjL/UQ9RrJ3V9lChoBmgJaA9DCPhtiPGaMzrAlIaUUpRoFUtcaBZHQIzAHos7MgV1fZQoaAZoCWgPQwioGr0aoNZGwJSGlFKUaBVLdmgWR0CMwOHN5dGBdX2UKGgGaAloD0MINj6T/fNwXsCUhpRSlGgVS2hoFkdAjMFBMzuWr3V9lChoBmgJaA9DCLlxi/m5KlPAlIaUUpRoFUtqaBZHQIzCLsv7FbV1fZQoaAZoCWgPQwhAwjBgyfUxwJSGlFKUaBVLgWgWR0CMwuFdszl+dX2UKGgGaAloD0MILNMvEW+SVsCUhpRSlGgVS1loFkdAjMLejM3ZPHV9lChoBmgJaA9DCOD2BInt4E7AlIaUUpRoFUtwaBZHQIzCzc0tRN11fZQoaAZoCWgPQwg1Cd6QxhxhwJSGlFKUaBVLZWgWR0CMwx3HJcPfdX2UKGgGaAloD0MIgzP4+8XeQcCUhpRSlGgVS1NoFkdAjMNdsSCe3HV9lChoBmgJaA9DCIF5yJQP4ljAlIaUUpRoFUthaBZHQIzEiQ3gk1N1fZQoaAZoCWgPQwh9I7pnXQtFwJSGlFKUaBVLfWgWR0CMxR5wfhdddX2UKGgGaAloD0MIG70aoDQxUMCUhpRSlGgVS1RoFkdAjMUOPmxMWXV9lChoBmgJaA9DCIW1MXbCQUTAlIaUUpRoFUtqaBZHQIzFZZ0Syt51fZQoaAZoCWgPQwhbP/1nzclPwJSGlFKUaBVLWGgWR0CMxZRG+bmVdX2UKGgGaAloD0MIpS2u8Zl4ScCUhpRSlGgVS5JoFkdAjMW5PM0P6XV9lChoBmgJaA9DCOyEl+DU7lfAlIaUUpRoFUt6aBZHQIzGh5qubI91fZQoaAZoCWgPQwiMZ9DQPyNEwJSGlFKUaBVLWGgWR0CMxrCk43m3dX2UKGgGaAloD0MI9WT+0TdhTcCUhpRSlGgVS0VoFkdAjMbtj9XLeXV9lChoBmgJaA9DCDo+WpwxBk3AlIaUUpRoFUtOaBZHQIzHyh11W811fZQoaAZoCWgPQwjgopOl1o9CwJSGlFKUaBVLd2gWR0CMyDYSxqwhdX2UKGgGaAloD0MI76tyofKBVMCUhpRSlGgVS2poFkdAjMlRcE/0NHV9lChoBmgJaA9DCIYCtoMRUlHAlIaUUpRoFUtwaBZHQIzKPmPo3aV1fZQoaAZoCWgPQwjlQuVfywBVwJSGlFKUaBVLVWgWR0CMylJSzgMudX2UKGgGaAloD0MIrRiuDoDcOsCUhpRSlGgVS4xoFkdAjMr+OXE61nV9lChoBmgJaA9DCP1P/u4dJlHAlIaUUpRoFUtmaBZHQIzK+vjfek51fZQoaAZoCWgPQwhW0/VE11VXwJSGlFKUaBVLYWgWR0CMy0YNy5qedX2UKGgGaAloD0MID37iAPpVIcCUhpRSlGgVS1xoFkdAjMuZU1hsqXV9lChoBmgJaA9DCDKtTWN7VF7AlIaUUpRoFUuVaBZHQIzMQNqgyuZ1fZQoaAZoCWgPQwhqaAOwAQ1QwJSGlFKUaBVLWWgWR0CMzH/vOQhfdX2UKGgGaAloD0MIhssqbAa4PsCUhpRSlGgVS3JoFkdAjMyxTS9dvHV9lChoBmgJaA9DCIF38umxQ0nAlIaUUpRoFUtOaBZHQIzM9R+BpYd1fZQoaAZoCWgPQwjbNLbXgkZMwJSGlFKUaBVLbmgWR0CMzabG3nZCdX2UKGgGaAloD0MId9Zuu9BoV8CUhpRSlGgVS19oFkdAjM5y39aUzXV9lChoBmgJaA9DCB3pDIy8aFbAlIaUUpRoFUuPaBZHQIzOt2A5Jbt1fZQoaAZoCWgPQwjbF9ALd5dSwJSGlFKUaBVLfWgWR0CMzyxkd3jddX2UKGgGaAloD0MI5Pih0ohlUcCUhpRSlGgVS0toFkdAjM9SJj2Ba3V9lChoBmgJaA9DCNxifm5o7VfAlIaUUpRoFUtsaBZHQIzQjjxTbWV1fZQoaAZoCWgPQwhr1hnfFyVdwJSGlFKUaBVLXGgWR0CM0H3TNMXadX2UKGgGaAloD0MIzhsnhXlWVcCUhpRSlGgVS05oFkdAjNDMNDtw73V9lChoBmgJaA9DCOKTTiSYPFbAlIaUUpRoFUtjaBZHQIzR0sasIVx1fZQoaAZoCWgPQwjIQQkzbYpbwJSGlFKUaBVLa2gWR0CM0hYJ3PiUdX2UKGgGaAloD0MIqU4Hsp53V8CUhpRSlGgVS3doFkdAjNLm9YfW+XV9lChoBmgJaA9DCKRVLeko2FXAlIaUUpRoFUtqaBZHQIzTW/Yao/B1fZQoaAZoCWgPQwhf7pOjALkgwJSGlFKUaBVLS2gWR0CM06GUwBYFdX2UKGgGaAloD0MIrd7hdmgAR8CUhpRSlGgVS3VoFkdAjNRdE9dNWXV9lChoBmgJaA9DCKzJU1bTw1zAlIaUUpRoFUtpaBZHQIzUyDyvs7d1fZQoaAZoCWgPQwhGBrmLMIZZwJSGlFKUaBVLeWgWR0CM1NhfBvaUdX2UKGgGaAloD0MIWoP3VbmwTMCUhpRSlGgVS3poFkdAjNUuD8LronV9lChoBmgJaA9DCCyeeqTBNUbAlIaUUpRoFUthaBZHQIzVXo9s7+11fZQoaAZoCWgPQwgLCoMyjZZMwJSGlFKUaBVLTGgWR0CM1aSL61stdX2UKGgGaAloD0MIAYV6+giPWsCUhpRSlGgVS2hoFkdAjNZFmOEM9nV9lChoBmgJaA9DCDV8C+vGYFPAlIaUUpRoFUtxaBZHQIzWuJxeb/h1fZQoaAZoCWgPQwiSk4lbBf0+wJSGlFKUaBVLTWgWR0CM1wGKQ7tBdX2UKGgGaAloD0MIHa1qSUfKUMCUhpRSlGgVS29oFkdAjNhAcLjPwHV9lChoBmgJaA9DCLpL4qyIG1DAlIaUUpRoFUtzaBZHQIzYVMIu5Bl1fZQoaAZoCWgPQwjMmII1zgo5wJSGlFKUaBVLUmgWR0CM2HEpiI+GdX2UKGgGaAloD0MIPiE7b2OYWECUhpRSlGgVTegDaBZHQIzZnRLK3d91fZQoaAZoCWgPQwhHVRNE3R5awJSGlFKUaBVLcWgWR0CM2buMuOCHdX2UKGgGaAloD0MI+GwdHOx7TMCUhpRSlGgVS2BoFkdAjNnBPsRg7nV9lChoBmgJaA9DCPFlogipw1LAlIaUUpRoFUtfaBZHQIzavECNjsl1fZQoaAZoCWgPQwhLdQEvMw5JwJSGlFKUaBVLWmgWR0CM2uVJtix3dX2UKGgGaAloD0MIqkTZW8oQW8CUhpRSlGgVS2doFkdAjNs0WdmQKnV9lChoBmgJaA9DCDikUYGTETTAlIaUUpRoFUt0aBZHQIzbgZsKsuF1fZQoaAZoCWgPQwj7dDxmoGxJwJSGlFKUaBVLg2gWR0CM27MyrPt2dX2UKGgGaAloD0MIuvPEc7ZpV8CUhpRSlGgVS11oFkdAjNwjVx0dR3V9lChoBmgJaA9DCFU01v7OzkvAlIaUUpRoFUtyaBZHQIzcWtEG7jF1fZQoaAZoCWgPQwiPcFrwog9KwJSGlFKUaBVLb2gWR0CM3UbgCOm0dX2UKGgGaAloD0MI8WQ3M/qVSsCUhpRSlGgVS1xoFkdAjN1Gbb1yvXV9lChoBmgJaA9DCKXZPA6D4GPAlIaUUpRoFUuSaBZHQIzdmyxA0Kt1fZQoaAZoCWgPQwg1lxsMddJIwJSGlFKUaBVLZmgWR0CM3bUb1h9cdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 28,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bcac97aacd08724569eebcafd2171279eeb13afc22e4bde1f2618d3c5c22f05
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:344353968ee89d20af9fb6dd3701662fa51e5b13b4da918a08b0f454aa0bf435
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43365232356b931182d239abd5e35448a4c4d3196db9aeb280f34e2d3a320170
3
+ size 278740
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -113.2391868297389, "std_reward": 33.86494782318368, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T13:54:39.480218"}