Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -113.24 +/- 33.86
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff298a40440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff298a404d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff298a40560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff298a405f0>", "_build": "<function ActorCriticPolicy._build at 0x7ff298a40680>", "forward": "<function ActorCriticPolicy.forward at 0x7ff298a40710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff298a407a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff298a40830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff298a408c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff298a40950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff298a409e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff298a04c30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651843449.5587342, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC2MSz4kxX88OvACP3s5Ob9ul4i+noQgPwAAgD8AAAAAM+AZvSBftD/PhKq+VRj8vEuQVLz7L5q9AAAAAAAAAABz2sc+46Q6P+uiCz+vD0a/6tq7vNH3GT0AAAAAAAAAAGZq3TskTbs/1T6sPQk9xz2mAQK92srovQAAAAAAAAAAzaRSO25dsz+qtis+1JFovh6GrrvOy4+9AAAAAAAAAADWWle+95siPw/5jL6g/nK/ipsvvia+870AAAAAAAAAAAAx87xfebA/6ZI9v8Jxy751vt08cl7NPQAAAAAAAAAAPUJzvn+KDD6i1L2+vnOIv/Zxmz5cUAO9AAAAAAAAAADzQK8+QqyHPt4LJj5aTGi/UO5FPkJ6Wr0AAAAAAAAAAHYnwz6UYQQ+DqA6PoTXYr8AlpI+0+pOPgAAAAAAAAAA89LXPRJEaT8T50o++QhRv89fAD6q0Mw8AAAAAAAAAAAmjtI9m45tP2xAxD4Cbmy/BNhHvcZ6iz0AAAAAAAAAAEZ+LD6fjD4/3jl6PhYyR78QzNg7TLMmPAAAAAAAAAAAs6qAvjPjqj/RYCi/HKWkvuL6/j0dkGa8AAAAAAAAAACzlE09rJRNP/TdqT0amDm/lrr/vX36Gb0AAAAAAAAAAMYWVb4Lbmk/eSYiv20Ug7/P1Wo9a6jFvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEYqtoGnpQ8CUhpRSlIwBbJRLcowBdJRHQIy1KHsTnJV1fZQoaAZoCWgPQwiR1ELJZPtuwJSGlFKUaBVLfGgWR0CMtaeLehwmdX2UKGgGaAloD0MITMKFPILLI0CUhpRSlGgVS4poFkdAjLYfZM+NcXV9lChoBmgJaA9DCBtMw/ARw07AlIaUUpRoFUt0aBZHQIy2V/4Irvt1fZQoaAZoCWgPQwi4dTdPdYBVwJSGlFKUaBVLX2gWR0CMtnl2eQMhdX2UKGgGaAloD0MIdy0hH/TuWMCUhpRSlGgVS25oFkdAjLackMTewnV9lChoBmgJaA9DCMbf9gSJy07AlIaUUpRoFUtVaBZHQIy2q7Ciypt1fZQoaAZoCWgPQwjFceDVckJSwJSGlFKUaBVLbGgWR0CMt1cdHUc5dX2UKGgGaAloD0MIdqT6zi+IWsCUhpRSlGgVS1BoFkdAjLeqv3ai9XV9lChoBmgJaA9DCNnr3R/vVRjAlIaUUpRoFUuAaBZHQIy3+rELpiZ1fZQoaAZoCWgPQwiz7Elgc6RDwJSGlFKUaBVLZmgWR0CMuB8/lhgFdX2UKGgGaAloD0MIlIjwL4KuVMCUhpRSlGgVS2ZoFkdAjLjlXA/LT3V9lChoBmgJaA9DCA360tufe0/AlIaUUpRoFUtNaBZHQIy48Oby6MB1fZQoaAZoCWgPQwhEv7Z++jtSwJSGlFKUaBVLcWgWR0CMuT3xnWaudX2UKGgGaAloD0MIBB2takk0UcCUhpRSlGgVS0FoFkdAjLnvyLAHmnV9lChoBmgJaA9DCO7sKw/S31rAlIaUUpRoFUtjaBZHQIy6wGKQ7tB1fZQoaAZoCWgPQwigGFkyxxJOwJSGlFKUaBVLUGgWR0CMuyS5iExqdX2UKGgGaAloD0MIWg9fJoooScCUhpRSlGgVS3FoFkdAjLswkxASnXV9lChoBmgJaA9DCAGJJlDEKlfAlIaUUpRoFUtXaBZHQIy7bpqynk11fZQoaAZoCWgPQwgmHlA25S5YwJSGlFKUaBVLXGgWR0CMu+Vfu1F6dX2UKGgGaAloD0MID0JAvgQfbcCUhpRSlGgVS3BoFkdAjLwHfl6qsHV9lChoBmgJaA9DCIGSAgtg3kPAlIaUUpRoFUtaaBZHQIy82qebutx1fZQoaAZoCWgPQwg4u7VMhoVNwJSGlFKUaBVLYmgWR0CMvPgpBomHdX2UKGgGaAloD0MIzsEzoUmGOMCUhpRSlGgVS4BoFkdAjL1t+b3GoHV9lChoBmgJaA9DCMuEX+rn+1DAlIaUUpRoFUtdaBZHQIy9gy0rsjV1fZQoaAZoCWgPQwg+lGjJ4y9LwJSGlFKUaBVLXGgWR0CMvjmNipeedX2UKGgGaAloD0MIO44fKo29V8CUhpRSlGgVS3JoFkdAjL6QLVnVXnV9lChoBmgJaA9DCHO9baZChGrAlIaUUpRoFUtmaBZHQIy+25z5oGp1fZQoaAZoCWgPQwiWk1D6QhxFwJSGlFKUaBVLZGgWR0CMvw8f3evZdX2UKGgGaAloD0MIpfYi2o4pDsCUhpRSlGgVS0xoFkdAjL/UQ9RrJ3V9lChoBmgJaA9DCPhtiPGaMzrAlIaUUpRoFUtcaBZHQIzAHos7MgV1fZQoaAZoCWgPQwioGr0aoNZGwJSGlFKUaBVLdmgWR0CMwOHN5dGBdX2UKGgGaAloD0MINj6T/fNwXsCUhpRSlGgVS2hoFkdAjMFBMzuWr3V9lChoBmgJaA9DCLlxi/m5KlPAlIaUUpRoFUtqaBZHQIzCLsv7FbV1fZQoaAZoCWgPQwhAwjBgyfUxwJSGlFKUaBVLgWgWR0CMwuFdszl+dX2UKGgGaAloD0MILNMvEW+SVsCUhpRSlGgVS1loFkdAjMLejM3ZPHV9lChoBmgJaA9DCOD2BInt4E7AlIaUUpRoFUtwaBZHQIzCzc0tRN11fZQoaAZoCWgPQwg1Cd6QxhxhwJSGlFKUaBVLZWgWR0CMwx3HJcPfdX2UKGgGaAloD0MIgzP4+8XeQcCUhpRSlGgVS1NoFkdAjMNdsSCe3HV9lChoBmgJaA9DCIF5yJQP4ljAlIaUUpRoFUthaBZHQIzEiQ3gk1N1fZQoaAZoCWgPQwh9I7pnXQtFwJSGlFKUaBVLfWgWR0CMxR5wfhdddX2UKGgGaAloD0MIG70aoDQxUMCUhpRSlGgVS1RoFkdAjMUOPmxMWXV9lChoBmgJaA9DCIW1MXbCQUTAlIaUUpRoFUtqaBZHQIzFZZ0Syt51fZQoaAZoCWgPQwhbP/1nzclPwJSGlFKUaBVLWGgWR0CMxZRG+bmVdX2UKGgGaAloD0MIpS2u8Zl4ScCUhpRSlGgVS5JoFkdAjMW5PM0P6XV9lChoBmgJaA9DCOyEl+DU7lfAlIaUUpRoFUt6aBZHQIzGh5qubI91fZQoaAZoCWgPQwiMZ9DQPyNEwJSGlFKUaBVLWGgWR0CMxrCk43m3dX2UKGgGaAloD0MI9WT+0TdhTcCUhpRSlGgVS0VoFkdAjMbtj9XLeXV9lChoBmgJaA9DCDo+WpwxBk3AlIaUUpRoFUtOaBZHQIzHyh11W811fZQoaAZoCWgPQwjgopOl1o9CwJSGlFKUaBVLd2gWR0CMyDYSxqwhdX2UKGgGaAloD0MI76tyofKBVMCUhpRSlGgVS2poFkdAjMlRcE/0NHV9lChoBmgJaA9DCIYCtoMRUlHAlIaUUpRoFUtwaBZHQIzKPmPo3aV1fZQoaAZoCWgPQwjlQuVfywBVwJSGlFKUaBVLVWgWR0CMylJSzgMudX2UKGgGaAloD0MIrRiuDoDcOsCUhpRSlGgVS4xoFkdAjMr+OXE61nV9lChoBmgJaA9DCP1P/u4dJlHAlIaUUpRoFUtmaBZHQIzK+vjfek51fZQoaAZoCWgPQwhW0/VE11VXwJSGlFKUaBVLYWgWR0CMy0YNy5qedX2UKGgGaAloD0MID37iAPpVIcCUhpRSlGgVS1xoFkdAjMuZU1hsqXV9lChoBmgJaA9DCDKtTWN7VF7AlIaUUpRoFUuVaBZHQIzMQNqgyuZ1fZQoaAZoCWgPQwhqaAOwAQ1QwJSGlFKUaBVLWWgWR0CMzH/vOQhfdX2UKGgGaAloD0MIhssqbAa4PsCUhpRSlGgVS3JoFkdAjMyxTS9dvHV9lChoBmgJaA9DCIF38umxQ0nAlIaUUpRoFUtOaBZHQIzM9R+BpYd1fZQoaAZoCWgPQwjbNLbXgkZMwJSGlFKUaBVLbmgWR0CMzabG3nZCdX2UKGgGaAloD0MId9Zuu9BoV8CUhpRSlGgVS19oFkdAjM5y39aUzXV9lChoBmgJaA9DCB3pDIy8aFbAlIaUUpRoFUuPaBZHQIzOt2A5Jbt1fZQoaAZoCWgPQwjbF9ALd5dSwJSGlFKUaBVLfWgWR0CMzyxkd3jddX2UKGgGaAloD0MI5Pih0ohlUcCUhpRSlGgVS0toFkdAjM9SJj2Ba3V9lChoBmgJaA9DCNxifm5o7VfAlIaUUpRoFUtsaBZHQIzQjjxTbWV1fZQoaAZoCWgPQwhr1hnfFyVdwJSGlFKUaBVLXGgWR0CM0H3TNMXadX2UKGgGaAloD0MIzhsnhXlWVcCUhpRSlGgVS05oFkdAjNDMNDtw73V9lChoBmgJaA9DCOKTTiSYPFbAlIaUUpRoFUtjaBZHQIzR0sasIVx1fZQoaAZoCWgPQwjIQQkzbYpbwJSGlFKUaBVLa2gWR0CM0hYJ3PiUdX2UKGgGaAloD0MIqU4Hsp53V8CUhpRSlGgVS3doFkdAjNLm9YfW+XV9lChoBmgJaA9DCKRVLeko2FXAlIaUUpRoFUtqaBZHQIzTW/Yao/B1fZQoaAZoCWgPQwhf7pOjALkgwJSGlFKUaBVLS2gWR0CM06GUwBYFdX2UKGgGaAloD0MIrd7hdmgAR8CUhpRSlGgVS3VoFkdAjNRdE9dNWXV9lChoBmgJaA9DCKzJU1bTw1zAlIaUUpRoFUtpaBZHQIzUyDyvs7d1fZQoaAZoCWgPQwhGBrmLMIZZwJSGlFKUaBVLeWgWR0CM1NhfBvaUdX2UKGgGaAloD0MIWoP3VbmwTMCUhpRSlGgVS3poFkdAjNUuD8LronV9lChoBmgJaA9DCCyeeqTBNUbAlIaUUpRoFUthaBZHQIzVXo9s7+11fZQoaAZoCWgPQwgLCoMyjZZMwJSGlFKUaBVLTGgWR0CM1aSL61stdX2UKGgGaAloD0MIAYV6+giPWsCUhpRSlGgVS2hoFkdAjNZFmOEM9nV9lChoBmgJaA9DCDV8C+vGYFPAlIaUUpRoFUtxaBZHQIzWuJxeb/h1fZQoaAZoCWgPQwiSk4lbBf0+wJSGlFKUaBVLTWgWR0CM1wGKQ7tBdX2UKGgGaAloD0MIHa1qSUfKUMCUhpRSlGgVS29oFkdAjNhAcLjPwHV9lChoBmgJaA9DCLpL4qyIG1DAlIaUUpRoFUtzaBZHQIzYVMIu5Bl1fZQoaAZoCWgPQwjMmII1zgo5wJSGlFKUaBVLUmgWR0CM2HEpiI+GdX2UKGgGaAloD0MIPiE7b2OYWECUhpRSlGgVTegDaBZHQIzZnRLK3d91fZQoaAZoCWgPQwhHVRNE3R5awJSGlFKUaBVLcWgWR0CM2buMuOCHdX2UKGgGaAloD0MI+GwdHOx7TMCUhpRSlGgVS2BoFkdAjNnBPsRg7nV9lChoBmgJaA9DCPFlogipw1LAlIaUUpRoFUtfaBZHQIzavECNjsl1fZQoaAZoCWgPQwhLdQEvMw5JwJSGlFKUaBVLWmgWR0CM2uVJtix3dX2UKGgGaAloD0MIqkTZW8oQW8CUhpRSlGgVS2doFkdAjNs0WdmQKnV9lChoBmgJaA9DCDikUYGTETTAlIaUUpRoFUt0aBZHQIzbgZsKsuF1fZQoaAZoCWgPQwj7dDxmoGxJwJSGlFKUaBVLg2gWR0CM27MyrPt2dX2UKGgGaAloD0MIuvPEc7ZpV8CUhpRSlGgVS11oFkdAjNwjVx0dR3V9lChoBmgJaA9DCFU01v7OzkvAlIaUUpRoFUtyaBZHQIzcWtEG7jF1fZQoaAZoCWgPQwiPcFrwog9KwJSGlFKUaBVLb2gWR0CM3UbgCOm0dX2UKGgGaAloD0MI8WQ3M/qVSsCUhpRSlGgVS1xoFkdAjN1Gbb1yvXV9lChoBmgJaA9DCKXZPA6D4GPAlIaUUpRoFUuSaBZHQIzdmyxA0Kt1fZQoaAZoCWgPQwg1lxsMddJIwJSGlFKUaBVLZmgWR0CM3bUb1h9cdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42670b0a30a067ad2d69d9067e1ea860c45fd7ca25f30fe07137203289aa7eac
|
3 |
+
size 143913
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff298a40440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff298a404d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff298a40560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff298a405f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff298a40680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff298a40710>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff298a407a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff298a40830>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff298a408c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff298a40950>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff298a409e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff298a04c30>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 114688,
|
46 |
+
"_total_timesteps": 100000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651843449.5587342,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC2MSz4kxX88OvACP3s5Ob9ul4i+noQgPwAAgD8AAAAAM+AZvSBftD/PhKq+VRj8vEuQVLz7L5q9AAAAAAAAAABz2sc+46Q6P+uiCz+vD0a/6tq7vNH3GT0AAAAAAAAAAGZq3TskTbs/1T6sPQk9xz2mAQK92srovQAAAAAAAAAAzaRSO25dsz+qtis+1JFovh6GrrvOy4+9AAAAAAAAAADWWle+95siPw/5jL6g/nK/ipsvvia+870AAAAAAAAAAAAx87xfebA/6ZI9v8Jxy751vt08cl7NPQAAAAAAAAAAPUJzvn+KDD6i1L2+vnOIv/Zxmz5cUAO9AAAAAAAAAADzQK8+QqyHPt4LJj5aTGi/UO5FPkJ6Wr0AAAAAAAAAAHYnwz6UYQQ+DqA6PoTXYr8AlpI+0+pOPgAAAAAAAAAA89LXPRJEaT8T50o++QhRv89fAD6q0Mw8AAAAAAAAAAAmjtI9m45tP2xAxD4Cbmy/BNhHvcZ6iz0AAAAAAAAAAEZ+LD6fjD4/3jl6PhYyR78QzNg7TLMmPAAAAAAAAAAAs6qAvjPjqj/RYCi/HKWkvuL6/j0dkGa8AAAAAAAAAACzlE09rJRNP/TdqT0amDm/lrr/vX36Gb0AAAAAAAAAAMYWVb4Lbmk/eSYiv20Ug7/P1Wo9a6jFvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.1468799999999999,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEYqtoGnpQ8CUhpRSlIwBbJRLcowBdJRHQIy1KHsTnJV1fZQoaAZoCWgPQwiR1ELJZPtuwJSGlFKUaBVLfGgWR0CMtaeLehwmdX2UKGgGaAloD0MITMKFPILLI0CUhpRSlGgVS4poFkdAjLYfZM+NcXV9lChoBmgJaA9DCBtMw/ARw07AlIaUUpRoFUt0aBZHQIy2V/4Irvt1fZQoaAZoCWgPQwi4dTdPdYBVwJSGlFKUaBVLX2gWR0CMtnl2eQMhdX2UKGgGaAloD0MIdy0hH/TuWMCUhpRSlGgVS25oFkdAjLackMTewnV9lChoBmgJaA9DCMbf9gSJy07AlIaUUpRoFUtVaBZHQIy2q7Ciypt1fZQoaAZoCWgPQwjFceDVckJSwJSGlFKUaBVLbGgWR0CMt1cdHUc5dX2UKGgGaAloD0MIdqT6zi+IWsCUhpRSlGgVS1BoFkdAjLeqv3ai9XV9lChoBmgJaA9DCNnr3R/vVRjAlIaUUpRoFUuAaBZHQIy3+rELpiZ1fZQoaAZoCWgPQwiz7Elgc6RDwJSGlFKUaBVLZmgWR0CMuB8/lhgFdX2UKGgGaAloD0MIlIjwL4KuVMCUhpRSlGgVS2ZoFkdAjLjlXA/LT3V9lChoBmgJaA9DCA360tufe0/AlIaUUpRoFUtNaBZHQIy48Oby6MB1fZQoaAZoCWgPQwhEv7Z++jtSwJSGlFKUaBVLcWgWR0CMuT3xnWaudX2UKGgGaAloD0MIBB2takk0UcCUhpRSlGgVS0FoFkdAjLnvyLAHmnV9lChoBmgJaA9DCO7sKw/S31rAlIaUUpRoFUtjaBZHQIy6wGKQ7tB1fZQoaAZoCWgPQwigGFkyxxJOwJSGlFKUaBVLUGgWR0CMuyS5iExqdX2UKGgGaAloD0MIWg9fJoooScCUhpRSlGgVS3FoFkdAjLswkxASnXV9lChoBmgJaA9DCAGJJlDEKlfAlIaUUpRoFUtXaBZHQIy7bpqynk11fZQoaAZoCWgPQwgmHlA25S5YwJSGlFKUaBVLXGgWR0CMu+Vfu1F6dX2UKGgGaAloD0MID0JAvgQfbcCUhpRSlGgVS3BoFkdAjLwHfl6qsHV9lChoBmgJaA9DCIGSAgtg3kPAlIaUUpRoFUtaaBZHQIy82qebutx1fZQoaAZoCWgPQwg4u7VMhoVNwJSGlFKUaBVLYmgWR0CMvPgpBomHdX2UKGgGaAloD0MIzsEzoUmGOMCUhpRSlGgVS4BoFkdAjL1t+b3GoHV9lChoBmgJaA9DCMuEX+rn+1DAlIaUUpRoFUtdaBZHQIy9gy0rsjV1fZQoaAZoCWgPQwg+lGjJ4y9LwJSGlFKUaBVLXGgWR0CMvjmNipeedX2UKGgGaAloD0MIO44fKo29V8CUhpRSlGgVS3JoFkdAjL6QLVnVXnV9lChoBmgJaA9DCHO9baZChGrAlIaUUpRoFUtmaBZHQIy+25z5oGp1fZQoaAZoCWgPQwiWk1D6QhxFwJSGlFKUaBVLZGgWR0CMvw8f3evZdX2UKGgGaAloD0MIpfYi2o4pDsCUhpRSlGgVS0xoFkdAjL/UQ9RrJ3V9lChoBmgJaA9DCPhtiPGaMzrAlIaUUpRoFUtcaBZHQIzAHos7MgV1fZQoaAZoCWgPQwioGr0aoNZGwJSGlFKUaBVLdmgWR0CMwOHN5dGBdX2UKGgGaAloD0MINj6T/fNwXsCUhpRSlGgVS2hoFkdAjMFBMzuWr3V9lChoBmgJaA9DCLlxi/m5KlPAlIaUUpRoFUtqaBZHQIzCLsv7FbV1fZQoaAZoCWgPQwhAwjBgyfUxwJSGlFKUaBVLgWgWR0CMwuFdszl+dX2UKGgGaAloD0MILNMvEW+SVsCUhpRSlGgVS1loFkdAjMLejM3ZPHV9lChoBmgJaA9DCOD2BInt4E7AlIaUUpRoFUtwaBZHQIzCzc0tRN11fZQoaAZoCWgPQwg1Cd6QxhxhwJSGlFKUaBVLZWgWR0CMwx3HJcPfdX2UKGgGaAloD0MIgzP4+8XeQcCUhpRSlGgVS1NoFkdAjMNdsSCe3HV9lChoBmgJaA9DCIF5yJQP4ljAlIaUUpRoFUthaBZHQIzEiQ3gk1N1fZQoaAZoCWgPQwh9I7pnXQtFwJSGlFKUaBVLfWgWR0CMxR5wfhdddX2UKGgGaAloD0MIG70aoDQxUMCUhpRSlGgVS1RoFkdAjMUOPmxMWXV9lChoBmgJaA9DCIW1MXbCQUTAlIaUUpRoFUtqaBZHQIzFZZ0Syt51fZQoaAZoCWgPQwhbP/1nzclPwJSGlFKUaBVLWGgWR0CMxZRG+bmVdX2UKGgGaAloD0MIpS2u8Zl4ScCUhpRSlGgVS5JoFkdAjMW5PM0P6XV9lChoBmgJaA9DCOyEl+DU7lfAlIaUUpRoFUt6aBZHQIzGh5qubI91fZQoaAZoCWgPQwiMZ9DQPyNEwJSGlFKUaBVLWGgWR0CMxrCk43m3dX2UKGgGaAloD0MI9WT+0TdhTcCUhpRSlGgVS0VoFkdAjMbtj9XLeXV9lChoBmgJaA9DCDo+WpwxBk3AlIaUUpRoFUtOaBZHQIzHyh11W811fZQoaAZoCWgPQwjgopOl1o9CwJSGlFKUaBVLd2gWR0CMyDYSxqwhdX2UKGgGaAloD0MI76tyofKBVMCUhpRSlGgVS2poFkdAjMlRcE/0NHV9lChoBmgJaA9DCIYCtoMRUlHAlIaUUpRoFUtwaBZHQIzKPmPo3aV1fZQoaAZoCWgPQwjlQuVfywBVwJSGlFKUaBVLVWgWR0CMylJSzgMudX2UKGgGaAloD0MIrRiuDoDcOsCUhpRSlGgVS4xoFkdAjMr+OXE61nV9lChoBmgJaA9DCP1P/u4dJlHAlIaUUpRoFUtmaBZHQIzK+vjfek51fZQoaAZoCWgPQwhW0/VE11VXwJSGlFKUaBVLYWgWR0CMy0YNy5qedX2UKGgGaAloD0MID37iAPpVIcCUhpRSlGgVS1xoFkdAjMuZU1hsqXV9lChoBmgJaA9DCDKtTWN7VF7AlIaUUpRoFUuVaBZHQIzMQNqgyuZ1fZQoaAZoCWgPQwhqaAOwAQ1QwJSGlFKUaBVLWWgWR0CMzH/vOQhfdX2UKGgGaAloD0MIhssqbAa4PsCUhpRSlGgVS3JoFkdAjMyxTS9dvHV9lChoBmgJaA9DCIF38umxQ0nAlIaUUpRoFUtOaBZHQIzM9R+BpYd1fZQoaAZoCWgPQwjbNLbXgkZMwJSGlFKUaBVLbmgWR0CMzabG3nZCdX2UKGgGaAloD0MId9Zuu9BoV8CUhpRSlGgVS19oFkdAjM5y39aUzXV9lChoBmgJaA9DCB3pDIy8aFbAlIaUUpRoFUuPaBZHQIzOt2A5Jbt1fZQoaAZoCWgPQwjbF9ALd5dSwJSGlFKUaBVLfWgWR0CMzyxkd3jddX2UKGgGaAloD0MI5Pih0ohlUcCUhpRSlGgVS0toFkdAjM9SJj2Ba3V9lChoBmgJaA9DCNxifm5o7VfAlIaUUpRoFUtsaBZHQIzQjjxTbWV1fZQoaAZoCWgPQwhr1hnfFyVdwJSGlFKUaBVLXGgWR0CM0H3TNMXadX2UKGgGaAloD0MIzhsnhXlWVcCUhpRSlGgVS05oFkdAjNDMNDtw73V9lChoBmgJaA9DCOKTTiSYPFbAlIaUUpRoFUtjaBZHQIzR0sasIVx1fZQoaAZoCWgPQwjIQQkzbYpbwJSGlFKUaBVLa2gWR0CM0hYJ3PiUdX2UKGgGaAloD0MIqU4Hsp53V8CUhpRSlGgVS3doFkdAjNLm9YfW+XV9lChoBmgJaA9DCKRVLeko2FXAlIaUUpRoFUtqaBZHQIzTW/Yao/B1fZQoaAZoCWgPQwhf7pOjALkgwJSGlFKUaBVLS2gWR0CM06GUwBYFdX2UKGgGaAloD0MIrd7hdmgAR8CUhpRSlGgVS3VoFkdAjNRdE9dNWXV9lChoBmgJaA9DCKzJU1bTw1zAlIaUUpRoFUtpaBZHQIzUyDyvs7d1fZQoaAZoCWgPQwhGBrmLMIZZwJSGlFKUaBVLeWgWR0CM1NhfBvaUdX2UKGgGaAloD0MIWoP3VbmwTMCUhpRSlGgVS3poFkdAjNUuD8LronV9lChoBmgJaA9DCCyeeqTBNUbAlIaUUpRoFUthaBZHQIzVXo9s7+11fZQoaAZoCWgPQwgLCoMyjZZMwJSGlFKUaBVLTGgWR0CM1aSL61stdX2UKGgGaAloD0MIAYV6+giPWsCUhpRSlGgVS2hoFkdAjNZFmOEM9nV9lChoBmgJaA9DCDV8C+vGYFPAlIaUUpRoFUtxaBZHQIzWuJxeb/h1fZQoaAZoCWgPQwiSk4lbBf0+wJSGlFKUaBVLTWgWR0CM1wGKQ7tBdX2UKGgGaAloD0MIHa1qSUfKUMCUhpRSlGgVS29oFkdAjNhAcLjPwHV9lChoBmgJaA9DCLpL4qyIG1DAlIaUUpRoFUtzaBZHQIzYVMIu5Bl1fZQoaAZoCWgPQwjMmII1zgo5wJSGlFKUaBVLUmgWR0CM2HEpiI+GdX2UKGgGaAloD0MIPiE7b2OYWECUhpRSlGgVTegDaBZHQIzZnRLK3d91fZQoaAZoCWgPQwhHVRNE3R5awJSGlFKUaBVLcWgWR0CM2buMuOCHdX2UKGgGaAloD0MI+GwdHOx7TMCUhpRSlGgVS2BoFkdAjNnBPsRg7nV9lChoBmgJaA9DCPFlogipw1LAlIaUUpRoFUtfaBZHQIzavECNjsl1fZQoaAZoCWgPQwhLdQEvMw5JwJSGlFKUaBVLWmgWR0CM2uVJtix3dX2UKGgGaAloD0MIqkTZW8oQW8CUhpRSlGgVS2doFkdAjNs0WdmQKnV9lChoBmgJaA9DCDikUYGTETTAlIaUUpRoFUt0aBZHQIzbgZsKsuF1fZQoaAZoCWgPQwj7dDxmoGxJwJSGlFKUaBVLg2gWR0CM27MyrPt2dX2UKGgGaAloD0MIuvPEc7ZpV8CUhpRSlGgVS11oFkdAjNwjVx0dR3V9lChoBmgJaA9DCFU01v7OzkvAlIaUUpRoFUtyaBZHQIzcWtEG7jF1fZQoaAZoCWgPQwiPcFrwog9KwJSGlFKUaBVLb2gWR0CM3UbgCOm0dX2UKGgGaAloD0MI8WQ3M/qVSsCUhpRSlGgVS1xoFkdAjN1Gbb1yvXV9lChoBmgJaA9DCKXZPA6D4GPAlIaUUpRoFUuSaBZHQIzdmyxA0Kt1fZQoaAZoCWgPQwg1lxsMddJIwJSGlFKUaBVLZmgWR0CM3bUb1h9cdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 28,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bcac97aacd08724569eebcafd2171279eeb13afc22e4bde1f2618d3c5c22f05
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:344353968ee89d20af9fb6dd3701662fa51e5b13b4da918a08b0f454aa0bf435
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43365232356b931182d239abd5e35448a4c4d3196db9aeb280f34e2d3a320170
|
3 |
+
size 278740
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -113.2391868297389, "std_reward": 33.86494782318368, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T13:54:39.480218"}
|