psorianom commited on
Commit
74df35f
1 Parent(s): 6249836

create README.md

Browse files
Files changed (1) hide show
  1. README.md +193 -0
README.md ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: fr
3
+ datasets:
4
+ - piaf
5
+ - FQuAD
6
+ - SQuAD-FR
7
+ ---
8
+
9
+ # camembert-base-squadFR-fquad-piaf
10
+
11
+ ## Description
12
+
13
+ French [DPR model](https://arxiv.org/abs/2004.04906) using [CamemBERT](https://arxiv.org/abs/1911.03894) as base and then fine-tuned on a combo of three French Q&A
14
+ ## Data
15
+ ### French Q&A
16
+ We use a combination of three French Q&A datasets:
17
+
18
+ 1. [PIAFv1.1](https://www.data.gouv.fr/en/datasets/piaf-le-dataset-francophone-de-questions-reponses/)
19
+ 2. [FQuADv1.0](https://fquad.illuin.tech/)
20
+ 3. [SQuAD-FR (SQuAD automatically translated to French)](https://github.com/Alikabbadj/French-SQuAD)
21
+
22
+ ### Training
23
+
24
+
25
+ We are using 90 562 random questions for `train` and 22 391 for `dev`. No question in `train` exists in `dev`. For each question, we have a single `positive_context` (the paragraph where the answer to this question is found) and around 30 `hard_negtive_contexts`. Hard negative contexts are found by querying an ES instance (via bm25 retrieval) and getting the top-k candidates **that do not contain the answer**.
26
+
27
+ The corresponding files are here:
28
+
29
+ ### Evaluation
30
+
31
+
32
+ We use FQuADv1.0 and French-SQuAD evaluation sets.
33
+
34
+
35
+ ## Training Script
36
+ We use the official [Facebook DPR implentation](https://github.com/facebookresearch/DPR) with a slight modification: by default, the code can work with Roberta models, still we changed a single line to make it easier to work with Camembert. This modification can be found [over here](dpr fork).
37
+
38
+ ### Hyperparameters
39
+
40
+ ```shell
41
+ python -m torch.distributed.launch --nproc_per_node=8 train_dense_encoder.py \
42
+ --max_grad_norm 2.0 --encoder_model_type hf_bert --pretrained_file data/bert-base-multilingual-uncased \
43
+ --seed 12345 --sequence_length 256 --warmup_steps 1237 --batch_size 16 --do_lower_case \
44
+ --train_file DPR_FR_train.json \
45
+ --dev_file ./data/100_hard_neg_ctxs/DPR_FR_dev.json \
46
+ --output_dir ./output/bert --learning_rate 2e-05 --num_train_epochs 35 \
47
+ --dev_batch_size 16 --val_av_rank_start_epoch 25 \
48
+ --pretrained_model_cfg ./data/bert-base-multilingual-uncased
49
+ ```
50
+
51
+ ###
52
+
53
+ ## Evaluation results
54
+ We obtain the following evaluation by using FQuAD and SQuAD-FR evaluation (or validation) sets. To obtain these results, we use [haystack's evaluation script](https://github.com/deepset-ai/haystack/blob/db4151bbc026f27c6d709fefef1088cd3f1e18b9/tutorials/Tutorial5_Evaluation.py) (**we report Retrieval results only**).
55
+
56
+ ### DPR
57
+
58
+ #### FQuAD v1.0 Evaluation
59
+ ```shell
60
+ For 2764 out of 3184 questions (86.81%), the answer was in the top-20 candidate passages selected by the retriever.
61
+ Retriever Recall: 0.87
62
+ Retriever Mean Avg Precision: 0.57
63
+ ```
64
+ #### SQuAD-FR Evaluation
65
+ ```shell
66
+ For 8945 out of 10018 questions (89.29%), the answer was in the top-20 candidate passages selected by the retriever.
67
+ Retriever Recall: 0.89
68
+ Retriever Mean Avg Precision: 0.63
69
+ ```
70
+
71
+ ### BM25
72
+
73
+
74
+ For reference, BM25 gets the results shown below. As in the original paper, regarding SQuAD-like datasets, the results of DPR are consistently superseeded by BM25.
75
+
76
+ #### FQuAD v1.0 Evaluation
77
+ ```shell
78
+ For 2966 out of 3184 questions (93.15%), the answer was in the top-20 candidate passages selected by the retriever.
79
+ Retriever Recall: 0.93
80
+ Retriever Mean Avg Precision: 0.74
81
+ ```
82
+ #### SQuAD-FR Evaluation
83
+ ```shell
84
+ For 9353 out of 10018 questions (93.36%), the answer was in the top-20 candidate passages selected by the retriever.
85
+ Retriever Recall: 0.93
86
+ Retriever Mean Avg Precision: 0.77
87
+ ```
88
+
89
+ ## Usage
90
+
91
+ The results reported here are obtained with the `haystack` library. To get to similar embeddings using exclusively HF `transformers` library, you can do the following:
92
+
93
+ ```python
94
+ from transformers import AutoTokenizer, AutoModel
95
+ query = "Salut, mon chien est-il mignon ?"
96
+ tokenizer = AutoTokenizer.from_pretrained("etalab-ia/dpr-question_encoder-fr_qa-camembert", do_lower_case=True)
97
+ input_ids = tokenizer(query, return_tensors='pt')["input_ids"]
98
+ model = AutoModel.from_pretrained("etalab-ia/dpr-question_encoder-fr_qa-camembert", return_dict=True)
99
+ embeddings = model.forward(input_ids).pooler_output
100
+ print(embeddings)
101
+ ```
102
+
103
+ And with `haystack` (using `transformers-3.3.1`), we use it as a retriever (**note that we reference it from a local path**):
104
+ ```
105
+ retriever = DensePassageRetriever(document_store=document_store,
106
+ query_embedding_model="./etalab-ia/dpr-question_encoder-fr_qa-camembert",
107
+ passage_embedding_model="./etalab-ia/dpr-ctx_encoder-fr_qa-camembert",
108
+ use_gpu=True,
109
+ embed_title=False,
110
+ batch_size=16,
111
+ use_fast_tokenizers=False
112
+ )
113
+ ```
114
+ ## Acknoledgements
115
+
116
+ This work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224).
117
+
118
+
119
+ ## Citations
120
+
121
+ ### Datasets
122
+
123
+ #### PIAF
124
+ ```
125
+ @inproceedings{KeraronLBAMSSS20,
126
+ author = {Rachel Keraron and
127
+ Guillaume Lancrenon and
128
+ Mathilde Bras and
129
+ Fr{\'{e}}d{\'{e}}ric Allary and
130
+ Gilles Moyse and
131
+ Thomas Scialom and
132
+ Edmundo{-}Pavel Soriano{-}Morales and
133
+ Jacopo Staiano},
134
+ title = {Project {PIAF:} Building a Native French Question-Answering Dataset},
135
+ booktitle = {{LREC}},
136
+ pages = {5481--5490},
137
+ publisher = {European Language Resources Association},
138
+ year = {2020}
139
+ }
140
+
141
+ ```
142
+
143
+ #### FQuAD
144
+ ```
145
+ @article{dHoffschmidt2020FQuADFQ,
146
+ title={FQuAD: French Question Answering Dataset},
147
+ author={Martin d'Hoffschmidt and Maxime Vidal and Wacim Belblidia and Tom Brendl'e and Quentin Heinrich},
148
+ journal={ArXiv},
149
+ year={2020},
150
+ volume={abs/2002.06071}
151
+ }
152
+ ```
153
+
154
+ #### SQuAD-FR
155
+ ```
156
+ @MISC{kabbadj2018,
157
+ author = "Kabbadj, Ali",
158
+ title = "Something new in French Text Mining and Information Extraction (Universal Chatbot): Largest Q&A French training dataset (110 000+) ",
159
+ editor = "linkedin.com",
160
+ month = "November",
161
+ year = "2018",
162
+ url = "\url{https://www.linkedin.com/pulse/something-new-french-text-mining-information-chatbot-largest-kabbadj/}",
163
+ note = "[Online; posted 11-November-2018]",
164
+ }
165
+ ```
166
+ ### Models
167
+
168
+ #### CamemBERT
169
+ HF model card : [https://huggingface.co/camembert-base](https://huggingface.co/camembert-base)
170
+
171
+ ```
172
+ @inproceedings{martin2020camembert,
173
+ title={CamemBERT: a Tasty French Language Model},
174
+ author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
175
+ booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
176
+ year={2020}
177
+ }
178
+ ```
179
+
180
+ #### DPR
181
+
182
+ ```
183
+ @misc{karpukhin2020dense,
184
+ title={Dense Passage Retrieval for Open-Domain Question Answering},
185
+ author={Vladimir Karpukhin and Barlas Oğuz and Sewon Min and Patrick Lewis and Ledell Wu and Sergey Edunov and Danqi Chen and Wen-tau Yih},
186
+ year={2020},
187
+ eprint={2004.04906},
188
+ archivePrefix={arXiv},
189
+ primaryClass={cs.CL}
190
+ }
191
+ ```
192
+
193
+