First attempt at uploading to Huggingface
Browse files- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- test.zip +2 -2
- test/data +22 -22
- test/policy.optimizer.pth +1 -1
- test/policy.pth +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 298.53 +/- 18.94
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f55c871f4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f55c871f560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f55c871f600>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f55c871f6a0>", "_build": "<function ActorCriticPolicy._build at 0x7f55c871f740>", "forward": "<function ActorCriticPolicy.forward at 0x7f55c871f7e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f55c871f880>", "_predict": "<function ActorCriticPolicy._predict at 0x7f55c871f920>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f55c871f9c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f55c871fa60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f55c871fb00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f55c9115bc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 6, "num_timesteps": 100005888, "_total_timesteps": 100000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672855078.3880582, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVJwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MIlQGXAIkBUwCUToWUKYwBX5SFlIx5L2hvbWUvam9uYXRhbi9QeWNoYXJtUHJvamVjdHMvSHVnZ2luZ2ZhY2VEZWVwUkxDb3Vyc2UvdmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMeS9ob21lL2pvbmF0YW4vUHljaGFybVByb2plY3RzL0h1Z2dpbmdmYWNlRGVlcFJMQ291cnNlL3ZlbnYvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -5.888000000009441e-05, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIev1JfO6zc0CUhpRSlIwBbJRLzIwBdJRHQOAWyVjkMkR1fZQoaAZoCWgPQwjv4ZLjTk1yQJSGlFKUaBVLf2gWR0DgFsscLjPwdX2UKGgGaAloD0MI3JxKBgC0cECUhpRSlGgVS41oFkdA4BbO63I+4nV9lChoBmgJaA9DCHHkgchiWXJAlIaUUpRoFUukaBZHQOAW0bdHlOp1fZQoaAZoCWgPQwh/944aE3dzQJSGlFKUaBVLwWgWR0DgFtJQfp2VdX2UKGgGaAloD0MIO/922W/Tc0CUhpRSlGgVS8loFkdA4BbT54GD+XV9lChoBmgJaA9DCJz7q8c9AHJAlIaUUpRoFUvCaBZHQOAW1M85jpd1fZQoaAZoCWgPQwg2WaMeIoZwQJSGlFKUaBVLpWgWR0DgFtUhkiD/dX2UKGgGaAloD0MIswxxrMvEckCUhpRSlGgVS7FoFkdA4BbZM1jy4HV9lChoBmgJaA9DCHi3skQnq3FAlIaUUpRoFUuVaBZHQOAW2hbSqlx1fZQoaAZoCWgPQwguGjIe5R5yQJSGlFKUaBVLrmgWR0DgFtwRYA80dX2UKGgGaAloD0MI9+gN95FZTkCUhpRSlGgVS55oFkdA4BbcvkBCD3V9lChoBmgJaA9DCCmSrwSSz3BAlIaUUpRoFUubaBZHQOAW3bzVc2R1fZQoaAZoCWgPQwhOKETAYZ1xQJSGlFKUaBVLtGgWR0DgFt7S9du6dX2UKGgGaAloD0MIP+WYLG7dcUCUhpRSlGgVS7JoFkdA4BbjocBEKHV9lChoBmgJaA9DCEMaFThZvXJAlIaUUpRoFUuuaBZHQOAW5E3wTdt1fZQoaAZoCWgPQwg3UUtza2tyQJSGlFKUaBVLfWgWR0DgFuU/s3Q2dX2UKGgGaAloD0MIPIVcqWd+cUCUhpRSlGgVS6BoFkdA4BblgsK9f3V9lChoBmgJaA9DCDVfJR+7M3FAlIaUUpRoFUuuaBZHQOAW5vC4z8B1fZQoaAZoCWgPQwhl/WZien1zQJSGlFKUaBVLzmgWR0DgFustCiRGdX2UKGgGaAloD0MI7Z+nAYMhb0CUhpRSlGgVS49oFkdA4BbsvAXVLHV9lChoBmgJaA9DCPaWcr7Yh3FAlIaUUpRoFUufaBZHQOAW7Ql8gIR1fZQoaAZoCWgPQwiSPxh4rg5yQJSGlFKUaBVLomgWR0DgFu67CiyqdX2UKGgGaAloD0MIQZ/Ik6TacUCUhpRSlGgVS7NoFkdA4Bbxij1wpHV9lChoBmgJaA9DCDi7tUwGsnNAlIaUUpRoFUvQaBZHQOAW8b7MxGl1fZQoaAZoCWgPQwilFkomJ9ZxQJSGlFKUaBVLsWgWR0DgFvWr4FibdX2UKGgGaAloD0MIxOxl26kJckCUhpRSlGgVS6loFkdA4Bb20L2HtXV9lChoBmgJaA9DCG+8OzKWNnJAlIaUUpRoFUuraBZHQOAW+P7m+0x1fZQoaAZoCWgPQwgtBg/T/kxyQJSGlFKUaBVLimgWR0DgFvnnrY5DdX2UKGgGaAloD0MIcobijvdxc0CUhpRSlGgVS9xoFkdA4Bb6Mi0OVnV9lChoBmgJaA9DCBuBeF0/fXNAlIaUUpRoFUufaBZHQOAW/vBN21V1fZQoaAZoCWgPQwjfqBWmL0pxQJSGlFKUaBVLs2gWR0DgFwP2qT8pdX2UKGgGaAloD0MIAfp9/6a9ckCUhpRSlGgVS69oFkdA4BcE6oddV3V9lChoBmgJaA9DCFuZ8Eu933FAlIaUUpRoFUuXaBZHQOAXBcGLUCt1fZQoaAZoCWgPQwi/fogNVu9wQJSGlFKUaBVLkmgWR0DgFwetdzGQdX2UKGgGaAloD0MIMIMxIhG6cUCUhpRSlGgVS7FoFkdA4BcIWGATZnV9lChoBmgJaA9DCMzQeCJIH3JAlIaUUpRoFUvQaBZHQOAXCcXzlLh1fZQoaAZoCWgPQwj5n/zdu6lxQJSGlFKUaBVLsGgWR0DgFxCUqx1QdX2UKGgGaAloD0MI1NNH4I+Oc0CUhpRSlGgVS75oFkdA4BcQsibDuXV9lChoBmgJaA9DCP/KSpMS0nJAlIaUUpRoFUvRaBZHQOAXEPyy2QZ1fZQoaAZoCWgPQwj9wFWeADNyQJSGlFKUaBVLomgWR0DgFxJv0AcUdX2UKGgGaAloD0MISWdg5KXacUCUhpRSlGgVS7RoFkdA4BcSzJ6ppHV9lChoBmgJaA9DCI/hsZ9F7XJAlIaUUpRoFUuYaBZHQOAXE1ANXo11fZQoaAZoCWgPQwjCacGLPvpyQJSGlFKUaBVLimgWR0DgFxjBpHqedX2UKGgGaAloD0MIycfuAmVHc0CUhpRSlGgVS7ZoFkdA4BcbjQqqfnV9lChoBmgJaA9DCBfYYyIlKHFAlIaUUpRoFUuWaBZHQOAXG+puMuR1fZQoaAZoCWgPQwizs+idSopxQJSGlFKUaBVLumgWR0DgFxwrp7kXdX2UKGgGaAloD0MIWfllMAbRcUCUhpRSlGgVS6ZoFkdA4BcdSwGGEnV9lChoBmgJaA9DCOnTKvoDYHJAlIaUUpRoFUu5aBZHQOAXHXSH/Ll1fZQoaAZoCWgPQwi1GhL3WJZwQJSGlFKUaBVLomgWR0DgFyJsCT2WdX2UKGgGaAloD0MIfGRz1TzzckCUhpRSlGgVS6poFkdA4Bcly3b213V9lChoBmgJaA9DCEDbatYZS3JAlIaUUpRoFUutaBZHQOAXJpysCDF1fZQoaAZoCWgPQwjW4egq3Q1xQJSGlFKUaBVLlmgWR0DgFybCZ4OddX2UKGgGaAloD0MIibSNP9ERckCUhpRSlGgVS8VoFkdA4BcnzDn/1nV9lChoBmgJaA9DCJeqtMX1CXJAlIaUUpRoFUvEaBZHQOAXKRujynV1fZQoaAZoCWgPQwg4vCAi9Rh0QJSGlFKUaBVLtWgWR0DgFy1uqFRHdX2UKGgGaAloD0MIO/2gLlIrcUCUhpRSlGgVS61oFkdA4BcxL6LwWnV9lChoBmgJaA9DCDSFzmus3HFAlIaUUpRoFUuiaBZHQOAXMcxREWt1fZQoaAZoCWgPQwgHKA01ylJyQJSGlFKUaBVL1mgWR0DgFzMHRkVfdX2UKGgGaAloD0MI8Q7wpIX/cUCUhpRSlGgVS7doFkdA4Bc0wOe8PHV9lChoBmgJaA9DCIlhhzHp83JAlIaUUpRoFUvtaBZHQOAXNXf642F1fZQoaAZoCWgPQwilpIehFYFxQJSGlFKUaBVLi2gWR0DgFzaCLdeqdX2UKGgGaAloD0MIFcRA174yc0CUhpRSlGgVS7toFkdA4BdBTnJT2nV9lChoBmgJaA9DCMB1xYzwqnJAlIaUUpRoFUuzaBZHQOAXQWp4rz51fZQoaAZoCWgPQwjRXKeR1sByQJSGlFKUaBVLqWgWR0DgF0H/c32mdX2UKGgGaAloD0MINUOqKB6NckCUhpRSlGgVS6loFkdA4BdFbc45tHV9lChoBmgJaA9DCN4FSgqsAHJAlIaUUpRoFUvCaBZHQOAXRfDR+jN1fZQoaAZoCWgPQwgfZ5qwvaJyQJSGlFKUaBVL3GgWR0DgF0bZlFtsdX2UKGgGaAloD0MI+5XOh+f0b0CUhpRSlGgVS5JoFkdA4BdLQJokA3V9lChoBmgJaA9DCLJIE++A6m5AlIaUUpRoFUufaBZHQOAXS27cwg11fZQoaAZoCWgPQwjirIiaqOhxQJSGlFKUaBVLu2gWR0DgF006vq1PdX2UKGgGaAloD0MIG55eKYvwcECUhpRSlGgVS5xoFkdA4BdPJ/oaDXV9lChoBmgJaA9DCAiSdw7lv3JAlIaUUpRoFUu5aBZHQOAXUWuPmxN1fZQoaAZoCWgPQwhPP6iLVBFxQJSGlFKUaBVLhWgWR0DgF1OEFGG3dX2UKGgGaAloD0MIpOGUublcc0CUhpRSlGgVS9loFkdA4BdUWK2rn3V9lChoBmgJaA9DCG2Oc5twK0lAlIaUUpRoFUuYaBZHQOAXVJZfUnZ1fZQoaAZoCWgPQwi7DP/pBhluQJSGlFKUaBVLkGgWR0DgF1XUoa1kdX2UKGgGaAloD0MI6dFUT2Z5b0CUhpRSlGgVS5NoFkdA4BdX2weNk3V9lChoBmgJaA9DCJj3ONNE73BAlIaUUpRoFUuaaBZHQOAXWmys0YV1fZQoaAZoCWgPQwjisDTwI3xyQJSGlFKUaBVLnWgWR0DgF119R77bdX2UKGgGaAloD0MIYDsYsY9tcECUhpRSlGgVS4doFkdA4Bdd19nbqXV9lChoBmgJaA9DCMLfL2ZLJXNAlIaUUpRoFUu9aBZHQOAXXr4xk/d1fZQoaAZoCWgPQwhdF35wvvhvQJSGlFKUaBVLnmgWR0DgF2FylvZRdX2UKGgGaAloD0MInuqQm+EWc0CUhpRSlGgVS+1oFkdA4Bditga3qnV9lChoBmgJaA9DCA2K5gFsxnFAlIaUUpRoFUu6aBZHQOAXZdat9x91fZQoaAZoCWgPQwiki00rBfFxQJSGlFKUaBVLgmgWR0DgF2aq2BrfdX2UKGgGaAloD0MI+aHSiJmFc0CUhpRSlGgVS7BoFkdA4BdoNrTH83V9lChoBmgJaA9DCAby7PKtyHJAlIaUUpRoFUvGaBZHQOAXaczyjHp1fZQoaAZoCWgPQwiHGRpPhBdxQJSGlFKUaBVLk2gWR0DgF2tX18LKdX2UKGgGaAloD0MIuwm+aTpMcECUhpRSlGgVS6FoFkdA4Bdvf9pAU3V9lChoBmgJaA9DCP5IERkWLXNAlIaUUpRoFUueaBZHQOAXcDASFoN1fZQoaAZoCWgPQwj+8V61cuFyQJSGlFKUaBVL92gWR0DgF3B8Sf16dX2UKGgGaAloD0MIzSGphVIOckCUhpRSlGgVS7VoFkdA4Bdy4VARkHV9lChoBmgJaA9DCC3qk9whFnFAlIaUUpRoFUuHaBZHQOAXc1tEXtV1fZQoaAZoCWgPQwh3aFiMulRxQJSGlFKUaBVLpWgWR0DgF3OHIIWydX2UKGgGaAloD0MIKGN8mD3IcECUhpRSlGgVS5poFkdA4Bd4OwgTy3V9lChoBmgJaA9DCG/VdagmX3FAlIaUUpRoFUu1aBZHQOAXeuFSKm91fZQoaAZoCWgPQwirQZjb/UNwQJSGlFKUaBVLkWgWR0DgF3uGC7K8dX2UKGgGaAloD0MIll6bjRURcUCUhpRSlGgVS45oFkdA4Bd8E4WDYnV9lChoBmgJaA9DCL4uw396IXNAlIaUUpRoFUvmaBZHQOAXfaq2jO91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16277, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 1, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV/AEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLA0MGlwBkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMSi9ob21lL2pvbmF0YW4vUHljaGFybVByb2plY3RzL0h1Z2dpbmdmYWNlRGVlcFJMQ291cnNlL1VuaXQxL1VuaXQxVXBsb2FkLnB5lIwIPGxhbWJkYT6USxBDAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UjAhfX2ZpbGVfX5RoDXVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBh9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-56-generic-x86_64-with-glibc2.31 #62~20.04.1-Ubuntu SMP Tue Nov 22 21:24:20 UTC 2022", "Python": "3.11.1", "Stable-Baselines3": "1.4.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.19.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faa8292b4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faa8292b560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faa8292b600>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faa8292b6a0>", "_build": "<function ActorCriticPolicy._build at 0x7faa8292b740>", "forward": "<function ActorCriticPolicy.forward at 0x7faa8292b7e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faa8292b880>", "_predict": "<function ActorCriticPolicy._predict at 0x7faa8292b920>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faa8292b9c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faa8292ba60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faa8292bb00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7faa829267c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 128, "num_timesteps": 10092544, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672958649.6591418, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVJwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MIlQGXAIkBUwCUToWUKYwBX5SFlIx5L2hvbWUvam9uYXRhbi9QeWNoYXJtUHJvamVjdHMvSHVnZ2luZ2ZhY2VEZWVwUkxDb3Vyc2UvdmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMeS9ob21lL2pvbmF0YW4vUHljaGFybVByb2plY3RzL0h1Z2dpbmdmYWNlRGVlcFJMQ291cnNlL3ZlbnYvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkuAhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.009254400000000107, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZFxxcRRBckCUhpRSlIwBbJRLh4wBdJRHQK2Or/VAiV11fZQoaAZoCWgPQwj6f9WRY0pzQJSGlFKUaBVLwGgWR0Ctjr3tShrWdX2UKGgGaAloD0MIuOhkqfU6cECUhpRSlGgVS5hoFkdArY7lOdoWYXV9lChoBmgJaA9DCPeTMT7MAXRAlIaUUpRoFUutaBZHQK2O4exOclR1fZQoaAZoCWgPQwjp0r8k1ZhyQJSGlFKUaBVLjmgWR0Ctjudat9x7dX2UKGgGaAloD0MIxFvn3+67cUCUhpRSlGgVS8FoFkdArY73N5dGAnV9lChoBmgJaA9DCMsr19smw3BAlIaUUpRoFUu8aBZHQK2O/7JGOMl1fZQoaAZoCWgPQwgNcEG2bIlxQJSGlFKUaBVLiWgWR0CtjwYyXUpedX2UKGgGaAloD0MI9WbUfJUwc0CUhpRSlGgVS79oFkdArY8lqtYCAHV9lChoBmgJaA9DCPopjgPvn3JAlIaUUpRoFUuoaBZHQK2PL4gRsdl1fZQoaAZoCWgPQwhYrrfNVLdxQJSGlFKUaBVLpGgWR0CtjycrRSgodX2UKGgGaAloD0MIDHOCNvnRcUCUhpRSlGgVS6loFkdArY8lcv/R3XV9lChoBmgJaA9DCJcaoZ9pD3RAlIaUUpRoFUutaBZHQK2PQA2hqTN1fZQoaAZoCWgPQwjpLLMIBbRyQJSGlFKUaBVLoWgWR0Ctj0pFkQPJdX2UKGgGaAloD0MI4PdvXhz0cUCUhpRSlGgVS7RoFkdArY9uEIw/PnV9lChoBmgJaA9DCMYVF0dl2HJAlIaUUpRoFUu5aBZHQK2PfgQ6IWR1fZQoaAZoCWgPQwjx9iAEJANyQJSGlFKUaBVLpmgWR0Ctj4BMJx//dX2UKGgGaAloD0MIqb9eYYEIc0CUhpRSlGgVS7JoFkdArY9wLofSyHV9lChoBmgJaA9DCMaoa+39s3BAlIaUUpRoFUuRaBZHQK2PlP0qYqp1fZQoaAZoCWgPQwha8Q2Fj81wQJSGlFKUaBVLp2gWR0Ctj5ub7TDwdX2UKGgGaAloD0MIqHNFKeGhdECUhpRSlGgVS7loFkdArY+q4vvjO3V9lChoBmgJaA9DCHy3eePk0nFAlIaUUpRoFUuCaBZHQK2Pp0MgEEF1fZQoaAZoCWgPQwhF1a90vodyQJSGlFKUaBVLmGgWR0Ctj5iIk7fYdX2UKGgGaAloD0MIXTEjvL1ccECUhpRSlGgVS7BoFkdArY+rbBXS0HV9lChoBmgJaA9DCEoJwar65HNAlIaUUpRoFUu2aBZHQK2PtTqB3A51fZQoaAZoCWgPQwiYvtcQ3BlyQJSGlFKUaBVLpmgWR0Ctj79LpRoAdX2UKGgGaAloD0MIKSMuAA2gcUCUhpRSlGgVS5hoFkdArY+4ybhFVnV9lChoBmgJaA9DCArXo3C9DnFAlIaUUpRoFUu0aBZHQK2P1UwztTl1fZQoaAZoCWgPQwgRxHk4gZFyQJSGlFKUaBVLl2gWR0Ctj9UWdmQKdX2UKGgGaAloD0MIyHxAoDOrc0CUhpRSlGgVS7toFkdArY/r7Kq4pnV9lChoBmgJaA9DCK+YEd7eMHRAlIaUUpRoFUvEaBZHQK2QBS/CZWt1fZQoaAZoCWgPQwijyjDuRghwQJSGlFKUaBVLpWgWR0Ctj+zMJQchdX2UKGgGaAloD0MIYFrUJ7lWcECUhpRSlGgVS51oFkdArZANlRP423V9lChoBmgJaA9DCDqRYKpZFXJAlIaUUpRoFUuqaBZHQK2QHZElVtJ1fZQoaAZoCWgPQwgLRiV1AsZyQJSGlFKUaBVLjmgWR0CtkDSpBHCodX2UKGgGaAloD0MIt18+WXFRcUCUhpRSlGgVS6JoFkdArZBN5nlGPXV9lChoBmgJaA9DCMKKU62Fb3FAlIaUUpRoFUuMaBZHQK2QSIa99MN1fZQoaAZoCWgPQwiakxeZQIJxQJSGlFKUaBVLrWgWR0CtkGxZ2ZAqdX2UKGgGaAloD0MI5q26DtVAcUCUhpRSlGgVS6RoFkdArZBm78Nx2nV9lChoBmgJaA9DCJrsn6cBqXNAlIaUUpRoFUu6aBZHQK2Qitrbg0l1fZQoaAZoCWgPQwj+ZffkoTR0QJSGlFKUaBVLzmgWR0CtkKTVUdaMdX2UKGgGaAloD0MIrMjogOQ3dECUhpRSlGgVS6toFkdArZChrcj7h3V9lChoBmgJaA9DCIoEU81s43JAlIaUUpRoFUu0aBZHQK2QvhbW3Bp1fZQoaAZoCWgPQwgSE9TwbR9zQJSGlFKUaBVLnGgWR0CtkL4OlO45dX2UKGgGaAloD0MI6q7sgkHlc0CUhpRSlGgVS61oFkdArZDCq0dBB3V9lChoBmgJaA9DCEvNHmgFdnFAlIaUUpRoFUuaaBZHQK2Quig00nB1fZQoaAZoCWgPQwhyv0NRIEFxQJSGlFKUaBVLnGgWR0CtkNHxjJ+2dX2UKGgGaAloD0MIGysxzwrvcUCUhpRSlGgVS7FoFkdArZD5Qzk6tHV9lChoBmgJaA9DCKWeBaE8sHBAlIaUUpRoFUuqaBZHQK2RGTSsr/d1fZQoaAZoCWgPQwg6PITxU/lvQJSGlFKUaBVLpmgWR0CtkRHogV45dX2UKGgGaAloD0MIR+hn6nVTcUCUhpRSlGgVS6NoFkdArZEW7FsHjnV9lChoBmgJaA9DCACL/PphBHFAlIaUUpRoFUuZaBZHQK2RNN4Z/Ct1fZQoaAZoCWgPQwhtG0ZB8EVxQJSGlFKUaBVLrGgWR0CtkUX9zfaYdX2UKGgGaAloD0MIrUz4pb6+ckCUhpRSlGgVS7BoFkdArZFCUJOWSnV9lChoBmgJaA9DCKDgYkXNYHNAlIaUUpRoFUvBaBZHQK2RYBU70Wd1fZQoaAZoCWgPQwikxRnDnMZwQJSGlFKUaBVLgWgWR0CtkUbCSA6NdX2UKGgGaAloD0MI4/+OqFDickCUhpRSlGgVS5ZoFkdArZFdiBoVVXV9lChoBmgJaA9DCFcFajE44XBAlIaUUpRoFUufaBZHQK2RZn5BTn91fZQoaAZoCWgPQwigpSvYRlhzQJSGlFKUaBVLm2gWR0CtkWrhzeXSdX2UKGgGaAloD0MIbm5MT5iMcUCUhpRSlGgVS6VoFkdArZF+OEM9bHV9lChoBmgJaA9DCBuC4zLuunJAlIaUUpRoFUu9aBZHQK2RlAZbY9R1fZQoaAZoCWgPQwiwA+eMqG5vQJSGlFKUaBVLmWgWR0CtkY3DvVmSdX2UKGgGaAloD0MIH2Yv245/cUCUhpRSlGgVS6ZoFkdArZG01n/T9nV9lChoBmgJaA9DCAGKkSWzuXBAlIaUUpRoFUuWaBZHQK2R0Ka5PM11fZQoaAZoCWgPQwjBGfz94hdyQJSGlFKUaBVLsGgWR0Ctkd+V1Oj7dX2UKGgGaAloD0MIR8hAnt3LckCUhpRSlGgVS65oFkdArZHfS2H+InV9lChoBmgJaA9DCDXPEfkuB3JAlIaUUpRoFUuSaBZHQK2R7ezD4xl1fZQoaAZoCWgPQwhpHVVNECFyQJSGlFKUaBVLq2gWR0Ctkf5zxPO6dX2UKGgGaAloD0MIhXmPM831ckCUhpRSlGgVS7VoFkdArZHwTsY2sXV9lChoBmgJaA9DCHPzjeheQnJAlIaUUpRoFUuzaBZHQK2R7d2PkrB1fZQoaAZoCWgPQwjtSstIPV5zQJSGlFKUaBVLsmgWR0Ctkgfek56udX2UKGgGaAloD0MI6MByhMzdcECUhpRSlGgVS6JoFkdArZIUHUtqYnV9lChoBmgJaA9DCHJRLSJKsXJAlIaUUpRoFUupaBZHQK2SKG/vfCR1fZQoaAZoCWgPQwiocASp1BlzQJSGlFKUaBVLw2gWR0Ctkj5HEuQIdX2UKGgGaAloD0MI31FjQsxQckCUhpRSlGgVS69oFkdArZI31lGwzXV9lChoBmgJaA9DCOtVZHTA5W9AlIaUUpRoFUuSaBZHQK2SU4EwFkh1fZQoaAZoCWgPQwgSEf5FUJBxQJSGlFKUaBVLj2gWR0CtkkIEbHZLdX2UKGgGaAloD0MIraWAtL81dECUhpRSlGgVS7NoFkdArZJZ/ZuhsnV9lChoBmgJaA9DCGu5MxOML3RAlIaUUpRoFUvGaBZHQK2SWsDnvDx1fZQoaAZoCWgPQwjw2qUNBzVwQJSGlFKUaBVLnGgWR0CtknQ9A5aNdX2UKGgGaAloD0MIDI/9LNZyckCUhpRSlGgVS8loFkdArZJutlqagHV9lChoBmgJaA9DCBO54Ay+wXNAlIaUUpRoFUu2aBZHQK2SfdRBNVR1fZQoaAZoCWgPQwg+d4L9F6RxQJSGlFKUaBVLp2gWR0CtkolCswL3dX2UKGgGaAloD0MIYto399fvcUCUhpRSlGgVS7hoFkdArZKtt2s7uHV9lChoBmgJaA9DCBk9t9BV0nNAlIaUUpRoFUu7aBZHQK2SnPJq7Ad1fZQoaAZoCWgPQwh9QKAzqVZ0QJSGlFKUaBVLqWgWR0Ctkr0+cH4XdX2UKGgGaAloD0MIo1wavzBNckCUhpRSlGgVS6BoFkdArZKrZFocrHV9lChoBmgJaA9DCHtMpDRbqnNAlIaUUpRoFUvBaBZHQK2SwE4//vR1fZQoaAZoCWgPQwhPdcjN8ClyQJSGlFKUaBVLs2gWR0Ctkr0bDMvAdX2UKGgGaAloD0MI0uXN4ZpSckCUhpRSlGgVS6RoFkdArZK7vqkdm3V9lChoBmgJaA9DCAn6Cz3iyHBAlIaUUpRoFUuRaBZHQK2S9UgjhUB1fZQoaAZoCWgPQwibrFEPkUJ0QJSGlFKUaBVLq2gWR0Ctkvt6ol2NdX2UKGgGaAloD0MIdQKaCJvxcUCUhpRSlGgVS7NoFkdArZL8j/uLJnV9lChoBmgJaA9DCEeQSrEjSnFAlIaUUpRoFUusaBZHQK2TFi2Dxsl1fZQoaAZoCWgPQwj5SiAlNvdyQJSGlFKUaBVLoWgWR0Ctkx0NjLB9dX2UKGgGaAloD0MI/kgRGRZ6cUCUhpRSlGgVS6loFkdArZMVqrR0EHV9lChoBmgJaA9DCJuOAG6WHnJAlIaUUpRoFUu1aBZHQK2TFYuCf6J1fZQoaAZoCWgPQwjdRC3NbXNzQJSGlFKUaBVLqmgWR0Ctky1RtP56dX2UKGgGaAloD0MIswdagWELcECUhpRSlGgVS5xoFkdArZNAprk8zXV9lChoBmgJaA9DCG9nX3mQEXFAlIaUUpRoFUulaBZHQK2TLcL0Bfd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2592, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV/AEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLA0MGlwBkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMSi9ob21lL2pvbmF0YW4vUHljaGFybVByb2plY3RzL0h1Z2dpbmdmYWNlRGVlcFJMQ291cnNlL1VuaXQxL1VuaXQxVXBsb2FkLnB5lIwIPGxhbWJkYT6USxBDAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UjAhfX2ZpbGVfX5RoDXVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBh9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-56-generic-x86_64-with-glibc2.31 #62~20.04.1-Ubuntu SMP Tue Nov 22 21:24:20 UTC 2022", "Python": "3.11.1", "Stable-Baselines3": "1.4.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.19.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 298.53290492447815, "std_reward": 18.93647468728774, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-05T20:00:47.073074"}
|
test.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e232ec1d472792c69fa8ea90eee4fbd4268ff920af6cab9d448804d4dd7f78a4
|
3 |
+
size 146234
|
test/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc._abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -41,13 +41,13 @@
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -57,30 +57,30 @@
|
|
57 |
"_last_obs": null,
|
58 |
"_last_episode_starts": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_original_obs": null,
|
63 |
"_episode_num": 0,
|
64 |
"use_sde": false,
|
65 |
"sde_sample_freq": -1,
|
66 |
-
"_current_progress_remaining": -
|
67 |
"ep_info_buffer": {
|
68 |
":type:": "<class 'collections.deque'>",
|
69 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
},
|
71 |
"ep_success_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
74 |
},
|
75 |
-
"_n_updates":
|
76 |
"n_steps": 1024,
|
77 |
-
"gamma": 0.
|
78 |
"gae_lambda": 0.99,
|
79 |
"ent_coef": 0.01,
|
80 |
"vf_coef": 0.5,
|
81 |
"max_grad_norm": 0.5,
|
82 |
"batch_size": 256,
|
83 |
-
"n_epochs":
|
84 |
"clip_range": {
|
85 |
":type:": "<class 'function'>",
|
86 |
":serialized:": "gAWV/AEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLA0MGlwBkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMSi9ob21lL2pvbmF0YW4vUHljaGFybVByb2plY3RzL0h1Z2dpbmdmYWNlRGVlcFJMQ291cnNlL1VuaXQxL1VuaXQxVXBsb2FkLnB5lIwIPGxhbWJkYT6USxBDAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UjAhfX2ZpbGVfX5RoDXVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBh9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7faa8292b4c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faa8292b560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faa8292b600>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faa8292b6a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7faa8292b740>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7faa8292b7e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faa8292b880>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7faa8292b920>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faa8292b9c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faa8292ba60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7faa8292bb00>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7faa829267c0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
+
"n_envs": 128,
|
45 |
+
"num_timesteps": 10092544,
|
46 |
+
"_total_timesteps": 10000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1672958649.6591418,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
57 |
"_last_obs": null,
|
58 |
"_last_episode_starts": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkuAhZSMAUOUdJRSlC4="
|
61 |
},
|
62 |
"_last_original_obs": null,
|
63 |
"_episode_num": 0,
|
64 |
"use_sde": false,
|
65 |
"sde_sample_freq": -1,
|
66 |
+
"_current_progress_remaining": -0.009254400000000107,
|
67 |
"ep_info_buffer": {
|
68 |
":type:": "<class 'collections.deque'>",
|
69 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZFxxcRRBckCUhpRSlIwBbJRLh4wBdJRHQK2Or/VAiV11fZQoaAZoCWgPQwj6f9WRY0pzQJSGlFKUaBVLwGgWR0Ctjr3tShrWdX2UKGgGaAloD0MIuOhkqfU6cECUhpRSlGgVS5hoFkdArY7lOdoWYXV9lChoBmgJaA9DCPeTMT7MAXRAlIaUUpRoFUutaBZHQK2O4exOclR1fZQoaAZoCWgPQwjp0r8k1ZhyQJSGlFKUaBVLjmgWR0Ctjudat9x7dX2UKGgGaAloD0MIxFvn3+67cUCUhpRSlGgVS8FoFkdArY73N5dGAnV9lChoBmgJaA9DCMsr19smw3BAlIaUUpRoFUu8aBZHQK2O/7JGOMl1fZQoaAZoCWgPQwgNcEG2bIlxQJSGlFKUaBVLiWgWR0CtjwYyXUpedX2UKGgGaAloD0MI9WbUfJUwc0CUhpRSlGgVS79oFkdArY8lqtYCAHV9lChoBmgJaA9DCPopjgPvn3JAlIaUUpRoFUuoaBZHQK2PL4gRsdl1fZQoaAZoCWgPQwhYrrfNVLdxQJSGlFKUaBVLpGgWR0CtjycrRSgodX2UKGgGaAloD0MIDHOCNvnRcUCUhpRSlGgVS6loFkdArY8lcv/R3XV9lChoBmgJaA9DCJcaoZ9pD3RAlIaUUpRoFUutaBZHQK2PQA2hqTN1fZQoaAZoCWgPQwjpLLMIBbRyQJSGlFKUaBVLoWgWR0Ctj0pFkQPJdX2UKGgGaAloD0MI4PdvXhz0cUCUhpRSlGgVS7RoFkdArY9uEIw/PnV9lChoBmgJaA9DCMYVF0dl2HJAlIaUUpRoFUu5aBZHQK2PfgQ6IWR1fZQoaAZoCWgPQwjx9iAEJANyQJSGlFKUaBVLpmgWR0Ctj4BMJx//dX2UKGgGaAloD0MIqb9eYYEIc0CUhpRSlGgVS7JoFkdArY9wLofSyHV9lChoBmgJaA9DCMaoa+39s3BAlIaUUpRoFUuRaBZHQK2PlP0qYqp1fZQoaAZoCWgPQwha8Q2Fj81wQJSGlFKUaBVLp2gWR0Ctj5ub7TDwdX2UKGgGaAloD0MIqHNFKeGhdECUhpRSlGgVS7loFkdArY+q4vvjO3V9lChoBmgJaA9DCHy3eePk0nFAlIaUUpRoFUuCaBZHQK2Pp0MgEEF1fZQoaAZoCWgPQwhF1a90vodyQJSGlFKUaBVLmGgWR0Ctj5iIk7fYdX2UKGgGaAloD0MIXTEjvL1ccECUhpRSlGgVS7BoFkdArY+rbBXS0HV9lChoBmgJaA9DCEoJwar65HNAlIaUUpRoFUu2aBZHQK2PtTqB3A51fZQoaAZoCWgPQwiYvtcQ3BlyQJSGlFKUaBVLpmgWR0Ctj79LpRoAdX2UKGgGaAloD0MIKSMuAA2gcUCUhpRSlGgVS5hoFkdArY+4ybhFVnV9lChoBmgJaA9DCArXo3C9DnFAlIaUUpRoFUu0aBZHQK2P1UwztTl1fZQoaAZoCWgPQwgRxHk4gZFyQJSGlFKUaBVLl2gWR0Ctj9UWdmQKdX2UKGgGaAloD0MIyHxAoDOrc0CUhpRSlGgVS7toFkdArY/r7Kq4pnV9lChoBmgJaA9DCK+YEd7eMHRAlIaUUpRoFUvEaBZHQK2QBS/CZWt1fZQoaAZoCWgPQwijyjDuRghwQJSGlFKUaBVLpWgWR0Ctj+zMJQchdX2UKGgGaAloD0MIYFrUJ7lWcECUhpRSlGgVS51oFkdArZANlRP423V9lChoBmgJaA9DCDqRYKpZFXJAlIaUUpRoFUuqaBZHQK2QHZElVtJ1fZQoaAZoCWgPQwgLRiV1AsZyQJSGlFKUaBVLjmgWR0CtkDSpBHCodX2UKGgGaAloD0MIt18+WXFRcUCUhpRSlGgVS6JoFkdArZBN5nlGPXV9lChoBmgJaA9DCMKKU62Fb3FAlIaUUpRoFUuMaBZHQK2QSIa99MN1fZQoaAZoCWgPQwiakxeZQIJxQJSGlFKUaBVLrWgWR0CtkGxZ2ZAqdX2UKGgGaAloD0MI5q26DtVAcUCUhpRSlGgVS6RoFkdArZBm78Nx2nV9lChoBmgJaA9DCJrsn6cBqXNAlIaUUpRoFUu6aBZHQK2Qitrbg0l1fZQoaAZoCWgPQwj+ZffkoTR0QJSGlFKUaBVLzmgWR0CtkKTVUdaMdX2UKGgGaAloD0MIrMjogOQ3dECUhpRSlGgVS6toFkdArZChrcj7h3V9lChoBmgJaA9DCIoEU81s43JAlIaUUpRoFUu0aBZHQK2QvhbW3Bp1fZQoaAZoCWgPQwgSE9TwbR9zQJSGlFKUaBVLnGgWR0CtkL4OlO45dX2UKGgGaAloD0MI6q7sgkHlc0CUhpRSlGgVS61oFkdArZDCq0dBB3V9lChoBmgJaA9DCEvNHmgFdnFAlIaUUpRoFUuaaBZHQK2Quig00nB1fZQoaAZoCWgPQwhyv0NRIEFxQJSGlFKUaBVLnGgWR0CtkNHxjJ+2dX2UKGgGaAloD0MIGysxzwrvcUCUhpRSlGgVS7FoFkdArZD5Qzk6tHV9lChoBmgJaA9DCKWeBaE8sHBAlIaUUpRoFUuqaBZHQK2RGTSsr/d1fZQoaAZoCWgPQwg6PITxU/lvQJSGlFKUaBVLpmgWR0CtkRHogV45dX2UKGgGaAloD0MIR+hn6nVTcUCUhpRSlGgVS6NoFkdArZEW7FsHjnV9lChoBmgJaA9DCACL/PphBHFAlIaUUpRoFUuZaBZHQK2RNN4Z/Ct1fZQoaAZoCWgPQwhtG0ZB8EVxQJSGlFKUaBVLrGgWR0CtkUX9zfaYdX2UKGgGaAloD0MIrUz4pb6+ckCUhpRSlGgVS7BoFkdArZFCUJOWSnV9lChoBmgJaA9DCKDgYkXNYHNAlIaUUpRoFUvBaBZHQK2RYBU70Wd1fZQoaAZoCWgPQwikxRnDnMZwQJSGlFKUaBVLgWgWR0CtkUbCSA6NdX2UKGgGaAloD0MI4/+OqFDickCUhpRSlGgVS5ZoFkdArZFdiBoVVXV9lChoBmgJaA9DCFcFajE44XBAlIaUUpRoFUufaBZHQK2RZn5BTn91fZQoaAZoCWgPQwigpSvYRlhzQJSGlFKUaBVLm2gWR0CtkWrhzeXSdX2UKGgGaAloD0MIbm5MT5iMcUCUhpRSlGgVS6VoFkdArZF+OEM9bHV9lChoBmgJaA9DCBuC4zLuunJAlIaUUpRoFUu9aBZHQK2RlAZbY9R1fZQoaAZoCWgPQwiwA+eMqG5vQJSGlFKUaBVLmWgWR0CtkY3DvVmSdX2UKGgGaAloD0MIH2Yv245/cUCUhpRSlGgVS6ZoFkdArZG01n/T9nV9lChoBmgJaA9DCAGKkSWzuXBAlIaUUpRoFUuWaBZHQK2R0Ka5PM11fZQoaAZoCWgPQwjBGfz94hdyQJSGlFKUaBVLsGgWR0Ctkd+V1Oj7dX2UKGgGaAloD0MIR8hAnt3LckCUhpRSlGgVS65oFkdArZHfS2H+InV9lChoBmgJaA9DCDXPEfkuB3JAlIaUUpRoFUuSaBZHQK2R7ezD4xl1fZQoaAZoCWgPQwhpHVVNECFyQJSGlFKUaBVLq2gWR0Ctkf5zxPO6dX2UKGgGaAloD0MIhXmPM831ckCUhpRSlGgVS7VoFkdArZHwTsY2sXV9lChoBmgJaA9DCHPzjeheQnJAlIaUUpRoFUuzaBZHQK2R7d2PkrB1fZQoaAZoCWgPQwjtSstIPV5zQJSGlFKUaBVLsmgWR0Ctkgfek56udX2UKGgGaAloD0MI6MByhMzdcECUhpRSlGgVS6JoFkdArZIUHUtqYnV9lChoBmgJaA9DCHJRLSJKsXJAlIaUUpRoFUupaBZHQK2SKG/vfCR1fZQoaAZoCWgPQwiocASp1BlzQJSGlFKUaBVLw2gWR0Ctkj5HEuQIdX2UKGgGaAloD0MI31FjQsxQckCUhpRSlGgVS69oFkdArZI31lGwzXV9lChoBmgJaA9DCOtVZHTA5W9AlIaUUpRoFUuSaBZHQK2SU4EwFkh1fZQoaAZoCWgPQwgSEf5FUJBxQJSGlFKUaBVLj2gWR0CtkkIEbHZLdX2UKGgGaAloD0MIraWAtL81dECUhpRSlGgVS7NoFkdArZJZ/ZuhsnV9lChoBmgJaA9DCGu5MxOML3RAlIaUUpRoFUvGaBZHQK2SWsDnvDx1fZQoaAZoCWgPQwjw2qUNBzVwQJSGlFKUaBVLnGgWR0CtknQ9A5aNdX2UKGgGaAloD0MIDI/9LNZyckCUhpRSlGgVS8loFkdArZJutlqagHV9lChoBmgJaA9DCBO54Ay+wXNAlIaUUpRoFUu2aBZHQK2SfdRBNVR1fZQoaAZoCWgPQwg+d4L9F6RxQJSGlFKUaBVLp2gWR0CtkolCswL3dX2UKGgGaAloD0MIYto399fvcUCUhpRSlGgVS7hoFkdArZKtt2s7uHV9lChoBmgJaA9DCBk9t9BV0nNAlIaUUpRoFUu7aBZHQK2SnPJq7Ad1fZQoaAZoCWgPQwh9QKAzqVZ0QJSGlFKUaBVLqWgWR0Ctkr0+cH4XdX2UKGgGaAloD0MIo1wavzBNckCUhpRSlGgVS6BoFkdArZKrZFocrHV9lChoBmgJaA9DCHtMpDRbqnNAlIaUUpRoFUvBaBZHQK2SwE4//vR1fZQoaAZoCWgPQwhPdcjN8ClyQJSGlFKUaBVLs2gWR0Ctkr0bDMvAdX2UKGgGaAloD0MI0uXN4ZpSckCUhpRSlGgVS6RoFkdArZK7vqkdm3V9lChoBmgJaA9DCAn6Cz3iyHBAlIaUUpRoFUuRaBZHQK2S9UgjhUB1fZQoaAZoCWgPQwibrFEPkUJ0QJSGlFKUaBVLq2gWR0Ctkvt6ol2NdX2UKGgGaAloD0MIdQKaCJvxcUCUhpRSlGgVS7NoFkdArZL8j/uLJnV9lChoBmgJaA9DCEeQSrEjSnFAlIaUUpRoFUusaBZHQK2TFi2Dxsl1fZQoaAZoCWgPQwj5SiAlNvdyQJSGlFKUaBVLoWgWR0Ctkx0NjLB9dX2UKGgGaAloD0MI/kgRGRZ6cUCUhpRSlGgVS6loFkdArZMVqrR0EHV9lChoBmgJaA9DCJuOAG6WHnJAlIaUUpRoFUu1aBZHQK2TFYuCf6J1fZQoaAZoCWgPQwjdRC3NbXNzQJSGlFKUaBVLqmgWR0Ctky1RtP56dX2UKGgGaAloD0MIswdagWELcECUhpRSlGgVS5xoFkdArZNAprk8zXV9lChoBmgJaA9DCG9nX3mQEXFAlIaUUpRoFUulaBZHQK2TLcL0Bfd1ZS4="
|
70 |
},
|
71 |
"ep_success_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
74 |
},
|
75 |
+
"_n_updates": 2592,
|
76 |
"n_steps": 1024,
|
77 |
+
"gamma": 0.999,
|
78 |
"gae_lambda": 0.99,
|
79 |
"ent_coef": 0.01,
|
80 |
"vf_coef": 0.5,
|
81 |
"max_grad_norm": 0.5,
|
82 |
"batch_size": 256,
|
83 |
+
"n_epochs": 16,
|
84 |
"clip_range": {
|
85 |
":type:": "<class 'function'>",
|
86 |
":serialized:": "gAWV/AEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLA0MGlwBkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMSi9ob21lL2pvbmF0YW4vUHljaGFybVByb2plY3RzL0h1Z2dpbmdmYWNlRGVlcFJMQ291cnNlL1VuaXQxL1VuaXQxVXBsb2FkLnB5lIwIPGxhbWJkYT6USxBDAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UjAhfX2ZpbGVfX5RoDXVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBh9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
test/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88057
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d31f872b50c1ea167012b3d129448eb589009c91938601f05a21bcebb721db9
|
3 |
size 88057
|
test/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c83b0c6da7f558b1462290ddf83633474b85238e476237acda1b7780fbcab65
|
3 |
size 43201
|