--- tags: - generated_from_trainer datasets: - evanarlian/common_voice_11_0_id_filtered metrics: - wer model-index: - name: wav2vec2-xls-r-164m-id results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: evanarlian/common_voice_11_0_id_filtered type: evanarlian/common_voice_11_0_id_filtered metrics: - name: Wer type: wer value: 0.2990499031454663 --- # wav2vec2-xls-r-164m-id This model is a fine-tuned version of [evanarlian/wav2vec2-xls-r-164m-id](https://huggingface.co/evanarlian/wav2vec2-xls-r-164m-id) on the evanarlian/common_voice_11_0_id_filtered dataset. It achieves the following results on the evaluation set: - Loss: 0.3510 - Wer: 0.2990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.089 | 1.84 | 2000 | 0.3205 | 0.3168 | | 0.0882 | 3.67 | 4000 | 0.3243 | 0.3203 | | 0.0868 | 5.51 | 6000 | 0.3272 | 0.3183 | | 0.0926 | 7.35 | 8000 | 0.3365 | 0.3209 | | 0.0943 | 9.18 | 10000 | 0.3400 | 0.3221 | | 0.0979 | 11.02 | 12000 | 0.3269 | 0.3192 | | 0.09 | 12.86 | 14000 | 0.3384 | 0.3164 | | 0.0877 | 14.69 | 16000 | 0.3284 | 0.3183 | | 0.0808 | 16.53 | 18000 | 0.3366 | 0.3189 | | 0.0835 | 18.37 | 20000 | 0.3306 | 0.3156 | | 0.08 | 20.2 | 22000 | 0.3384 | 0.3133 | | 0.0806 | 22.04 | 24000 | 0.3307 | 0.3109 | | 0.0749 | 23.88 | 26000 | 0.3493 | 0.3118 | | 0.073 | 25.71 | 28000 | 0.3479 | 0.3088 | | 0.0754 | 27.55 | 30000 | 0.3482 | 0.3109 | | 0.0697 | 29.38 | 32000 | 0.3515 | 0.3090 | | 0.07 | 31.22 | 34000 | 0.3532 | 0.3101 | | 0.0672 | 33.06 | 36000 | 0.3668 | 0.3086 | | 0.0713 | 34.89 | 38000 | 0.3560 | 0.3048 | | 0.0637 | 36.73 | 40000 | 0.3522 | 0.3028 | | 0.0695 | 38.57 | 42000 | 0.3407 | 0.3014 | | 0.0657 | 40.4 | 44000 | 0.3456 | 0.3025 | | 0.0598 | 42.24 | 46000 | 0.3498 | 0.3013 | | 0.059 | 44.08 | 48000 | 0.3563 | 0.3012 | | 0.0645 | 45.91 | 50000 | 0.3514 | 0.3002 | | 0.0595 | 47.75 | 52000 | 0.3545 | 0.3000 | | 0.064 | 49.59 | 54000 | 0.3510 | 0.2990 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2